What Kind of Theory Is a Model-Theoretic Semantics of a Natural Language?

Stanley Peters
Stanford University

What do these three have in common?

What do these three have in common?

They are all models!

Gisele Bündchen a fashion model

Nelson Mandela a model statesman

Museum display a model of Göttingen ca. 1890

Models of something or other

Model of Göttingen ca. 1890

Wind tunnel model of F-18

Numerical model of chemical reactor startup

Mouse model of disease

Model of colors

Non-standard model of natural numbers

A Model's Purpose

Represent spatial relationships

Measurement of aerodynamic properties

- Calculate time to steady state of a mix-reactor
- Determine causes, development of, and effectiveness of treatments for human diseases
- Spatially represent differences in color characteristics
- Demonstrate that Peano's Axioms do not characterize the natural numbers exactly

What Makes Something a Model?

- A model's construal (which depends on its purpose and is usually not a theory) determines how faithful it is to what it models. The model's structure determines its significant theoretical characteristics.
- The substance of a model usually has no significance! It can be chosen to be suitable for the model's purpose.
 - sets
 - vector spaces
 - canonical proofs
- We analyze faithful models as a way of studying certain properties of what they model.
- Ease of analyzing a model's structure can be in tension with transparency of the model's construal.

Is the argument valid?

$$(x)$$
 [like' $(x,m) \rightarrow x = c$]

 $\neg like'(p,m)$

IFF given another proposition!

$$(x) [like'(x,m) \rightarrow x = c]$$

$$\neg c = p$$

 $\therefore \neg like'(p,m)$

Distinct elements of a model's domain must be construed as different entities!

$$(x) [like'(x,m) \rightarrow x = c]$$

$$\neg c = p$$

$$\therefore \neg like'(p,m)$$

$$\exists x \exists y \ [\neg x = y \& P(x) \& P(y)]$$

Why Formalize?

 To clarify, assess consistency, rigorously define predictions/explanations, limit construals/scope of application

Just as important for language as in physical sciences!

- Intuitive semantics
 - $\downarrow \downarrow$
- Proof theory
 - **V**
- Model theory

Why model theory for natural languages?

Logical truth and logical implication

Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe
 Class of logically possible models

- most(A,B)
- $|A \cap B| > |A B|$

most(A,B)

• $|A| \le k \& |A \cap B| > |A - B|$

most(A,B)

$$|A \cap B| > |A - B|$$

most(A,B)

• $|A| \le k \& |A \cap B| > |A - B|$

- most(A,B)
- $|A \cap B| > |A B|$ when $|A| \le k$
- \perp when |A| > k

fewer than zero(A,B)

- most(A,B)
- $|A \cap B| > |A B|$

So model theory may sometimes fade into the background of natural language semantics, but it is still importantly there.

Why model theory for natural languages?

Logical truth and logical implication

Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe
 Class of logically possible models

Analytic truth and entailment

- Twas twilight, and the hungry calves
 Did call and frolic in the field
- Twas windy, and the foamy waves Did crest and break in the boat Subclass of 'admissible' models

Logical Truths & Synthetic Truths

- If *logical truths* are necessarily true in virtue of logical reasoning alone, and logical reasoning is valid independent of subject matter, then having so wide a range of models (structures) that only logical truths are satisfied in all of them is a reasonable strategy.
- If there are *synthetic truths* that are necessarily true in virtue of the meanings of non-logical vocabulary (in addition to logical vocabulary), then *admissible* models (structures) being a proper subset of all logically permitted ones is also a reasonable strategy.
- Characterization of the class of admissible models need not be limited to the object language's expressive resources. (One can't, for example, state with first-order quantification over times that infinitely many times exist.
- Don't expect proof theory of natural languages to be complete.

What About Contingent Truths?

- Construal of admissible models should account for them.
- Is there a sense in which contingent truths can be explained?
 - Some may be explained as consequences of other contingent truths by the language's model theory (thus also implicitly of synthetic and logical truths).
- Analogous to classical mechanics and truths about the dynamics of material bodies.

How Absolute Is Truth?

- Logical truths seem absolute.
- Analytic truths are arguably absolute.
- Some contingent truths are not very controversial, and may be absolute.
 - We are all in Tübingen on August 22, 2014.
- What about
 - The earth revolves around the sun.
 - The sun revolves around the earth.
- What about the answer to
 - Is light a wave or a particle?

- Even one who wants T-sentences should recognize that they only constitute a test that other things explain which contingent sentences are true.
- Don't forget Tarski's argument (from weak assumptions) that no consistent theory of truth is possible for a language that contains its own truth predicate.

Thanks for listening.

Let's talk!