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The unified probabilistic theory of indicative and counterfactual conditionals proposed
by Kaufmann (2005) leads to apparently conflicting predictions about the probabilities
of indicatives. We present experimental data which show that these predictions are not
only not at odds with the theory, but in fact reveal a real and rarely discussed ambiguity.

1 Introduction

The thesis that the probability of a conditional‘if A, C’ is the conditional probability
of C, givenA, has a long history. It was hinted at in Ramsey’s (1929) suggestion that
conditionals are used to argue about “degrees of belief,” and philosophers have since ex-
tensively studied its ramifications for logical and semantic theory. We will not discuss
these developments here (see Eells and Skyrms, 1994 and Edgington, 1995 for recent
overviews). Our goal is rather to present experimental evidence in support of Kauf-
mann’s (2004) claim that while the idea is basically right, it must be modified if it is to
account for a wider range of empirical facts.

We will begin with an outline of the relevant theoretical considerations (Sections 2
and 3) before describing our experiment (Section 4). Due to constraints on space, this
preliminary discussion will be brief. The reader is referred to the works cited for further
details and motivation.

2 Background
2.1 The Ramsey Test

Like most semantic theories of indicative conditionals, the probabilistic approach appeals
to an intuition that was first spelled out by Ramsey (1929):1

If two people are arguing ‘IfA will C?’ and are both in doubt as toA,
they areaddingA hypotheticallyto theirstock of knowledgeand arguing on

1Emphasis added. For consistency, we replace Ramsey’sp andq with A andC, respectively.
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Figure 1: Update withA in two steps: elimination and renormalization

that basis aboutC. . . We can say they are fixing theirdegrees of beliefin C
givenA.

In order to make this informal suggestion precise, the notions emphasized above must
be given explicit formal representations. The probabilistic framework we adopt makes
the following assumptions:

(1) a. “Stocks of knowledge” are represented by sets of possible worlds.
b. “Degrees of belief” correspond to (subjective) probability distributions over

possible worlds.
c. The “addition ofA” to a stock of knowledge proceeds by conditionalization.

We assume familiarity with possible worlds, the framework in which virtually all
treatments of conditionals, probabilistic or otherwise, are couched. A probability distri-
bution over a setW is a functionPr from subsets ofW to the interval[0, 1] such that (i)
Pr(W ) = 1 and (ii) for all disjoint subsetsX,Y ofW ,Pr(X∪Y ) = Pr(X)+Pr(Y ).2

The update ofPr with the information thatA is true plays an important part below
and deserves some discussion. It is useful to think of this operation as involving two
steps:eliminationandrenormalization. The former eliminates those possible worlds at
whichA is false. The latter consists in recalibrating the probabilities of the remaining
sets of worlds (at whichA is true) in such a way that the relative probabilities of all
sentences other thanA are preserved.

This procedure may be visualized as in Figure 1. After the elimination of those
possibilities at whichA is false, the probabilities are recalculated in such a way thatA
receives probability 1 and the proportions within the set ofA-worlds are restored. The
third picture shows the result. The probability of theC-worlds, shown as the striped area
in the picture, is larger after the update than it was in the original distribution. This is the
posteriorprobability ofC. The assumption underlying the probabilistic approach is that
it equals theprior probability of the conditional‘if A, then C’ .

Pr is a probability distribution over propositions, but we are interested in the sen-
tences which denote those propositions. To make this connection, we follow Kaufmann
(2005). Atomic sentences and truth-functional compounds thereof are assigned truth
values at possible worlds by a valuation functionV . Based onV andPr, we define a

2The second requirement must also hold for the limits of countable unions, but we ignore this here for
simplicity.
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Figure 2: Distribution of values for‘if A then C’

probability distributionP over such sentences. The probabilityP (ϕ) of a sentenceϕ is
theexpectationof its truth value, written ‘E[V (ϕ)]’ and defined as the weighted sum of
its values, where the weights are the probabilities thatV (ϕ) has those values:3

P (ϕ) = E[V (ϕ)] =
∑

x∈{0,1}

x · Pr(V (ϕ) = x)(2)

The extension ofV to conditionals is not entirely straightforward. Lewis (1976)
showed that conditional probabilities are not probabilities of propositions. We cannot in
general define an assignmentV (if A, thenC) in such a way that the expectation of its
values is guaranteed to equal the conditional probability ofC, givenA, for any probabil-
ity distributionPr. Wecan, however, define a value assignment which depends onPr:

Vw(if A thenC) =
{
Vw(C) if Vw(A) = 1
E[V (C)|V (A) = 1] if Vw(A) = 0(3)

Thus at worlds at whichA is true, the conditional is equivalent to the material con-
ditional. At worlds at whichA is false, the value of the conditional is the conditional
expectation ofC, given thatA is true. This value equals the conditional probability ofC,
givenA, and may fall anywhere in the interval[0, 1]. The resulting distribution of values
for the conditional is illustrated in Figure 2 (the colors correspond to values: black = 1;
white = 0; grey = intermediate).

2.2 Counterfactuals

In search of a unified theory of all conditionals, many authors have commented on the
connection between indicative conditionals and their counterfactual counterparts. Mini-
mal pairs like those in (4) suggest that the difference may be no more than one in temporal
reference: (4a) is unlikely now because, or to the extent to which, (4b)wasunlikely at
the time prior to the assassination at which its use would have been appropriate.

(4) a. If Oswald had not killed Kennedy, somebody else would have. [now]
b. If Oswald does not kill Kennedy, somebody else will. [11/21/63]

3We write ‘Pr(V (ϕ) = x)’ instead of ‘Pr({w ∈ W |Vw(ϕ) = 1})’ for the probability of the event that
V (ϕ) has valuex.
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The value assignment defined above and schematically illustrated in Figure 2 lends
itself to an interpretation that accords well with this view. Figure 2 shows the distribution
of values before the possibility that the antecedent be true is eliminated.4 Suppose this
distribution is updated, through the aforementioned two-step procedure, with the infor-
mation thatA is false. Then at all remaining worlds, the value of‘if A then C’ is the
prior conditional probability ofC, givenA, hence the value that the indicativehadbefore
the update.

The combination of the probabilistic approach with the thesis that counterfactuals are
Past-tense forms of the corresponding indicatives was labeled “Tense Probabilism” by
Barker (1998). Barker argues that Tense Probabilism, while plausible in cases like (4),
cannot be right in general. To show this, he uses the following example, which had earlier
been discussed by Slote (1978) and Bennett (1984), among others.

(5) a. Time 1: An unbiased coin is about to be tossed. You are asked to make a bet.
At this point, since the coin is fair,
P (if I bet on tails, I will lose) = .5

b. Time 2: You bet on heads.
c. Time 3: The coin is tossed and comes up heads. At this point,
P (if I had bet on tails, I would have lost) = 1

The judgments in (5a,c) are hardly disputable. But this means, Barker argues, that
the counterfactual in (5c) cannot be considered the Past-tense version of the indicative
in (5a).5

2.3 Causality

Barker’s argument against Tense Probabilism refutes only one possible way of establish-
ing a systematic connection between indicative and counterfactual conditionals. Kauf-
mann (2005) argues that while it is true that the sentences in (5) have different probabili-
ties at their respective times of evaluation, this does not imply that they are not equivalent.
The solution Kaufmann proposes makes crucial use of an assignment of values to condi-
tionals that is sensitive tocausal independencies. This notion will also be central to the
data we discuss below.

The basic idea, with regard to (5) above, is to incorporate the intuition that the out-
come of the toss does not causally depend on the bet: At those worlds at which you bet
on heads and win, the coin would still have come up heads even if you had bet on tails.

In general, such causal dependencies cannot be “read off” the probability distribu-
tion. Instead, they must given as part of the model. Specifically, acausal order〈Φ,≺〉
is a set of random variables (i.e., functions from possible worlds to numbers) ordered
by the transitive and asymmetric relation≺. The members of this set are intended to
represent the “causally relevant” factors of the situation. The interpretation of the condi-
tional depends on which factors are considered relevant and how they are related to each

4What exactly this means depends on the interpretation of the probability distributionPr. It may be the sub-
jective probability entertained by a speaker who is uncertain as to the true ofA; alternatively, it may represent
the objective chances of future events at a time at which bothA and A are open possibilities.

5Nor, Barker argues, are these judgments explained by theprior propensityaccount (Skyrms, 1981).
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Figure 3: Value assignment for (5): global (left) and local (right). Bt/Bh = you bet on
tails/heads; T/H = the coin comes up tails/heads

other. This is a source of ambiguity and context-dependence. We will assume here for
simplicity that the members ofΦ are denotations of atomic sentences in the language,
and futhermore, that they are few.6

Forϕ,ψ in Φ, the statement thatϕ ≺ ψ means that the expectation ofψ is determined
by the value ofϕ (and possibly those of other variables). This relation is used to modify
the value assignment in (3): The value of‘if A then C’ at a worldw at whichA is false
depends only on thoseA-worlds at which the variables that do not causally depend on
V (A) have the same values as they do atw. The definition is given in (6).7

Vw(A→ C) =

 Vw(C) if Vw(A) = 1
E[V (C)|V (A) = 1, ϕ = ϕw]

for all ϕ ∈ Φ such thatV (A) 6� ϕ if Vw(A) = 0
(6)

In (5) above, the intuitively correct interpretation follows if we assume that the set
of causally relevant variables includes the bet (Bh/Bt), the outcome of the toss (H/T),
and the winning or losing (W/L). As the scenario is set up, Bh/Bt and H/T are causally
independent of each other, and both jointly determine W/L. According to Definition (6),
this affects the value of the conditional‘if Bt, then L’ at worlds at which its antecedent is
false: The conditional expectation is only taken over those worlds at which the outcome
of the toss is the same as at the world of evaluation. The effect of this restriction is an
uneven distribution of values over the Bh-worlds, as shown on the right-hand side of
Figure 3.

The role of causal relations in the interpretation of counterfactuals is increasingly
being acknowledged in artificial intelligence, philosophy, and psychology (Pearl, 2000;
Spirtes et al., 2000; Galavotti et al., 2001; Sloman and Lagnado, 2004; Woodward, 2003).
The interpretation given in (6) corresponds, in our framework, to the use of the ‘do’
operator introduced by Pearl.

6This may not be reasonable if the goal is to give a metaphysically “true” representation of causal relations.
We do think it plausible, however, the speakers in their everyday use of conditionals consider no more than a
few such factors.

7Special provisions are required for the case that the falsehood ofA is entailedby the values of independent
variables. We ignore this case here.
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Figure 4: Assignment of values for (8)

3 Local and global interpretations

The coin example is of course uninteresting from a probabilistic point of view. The
bet and the outcome of the toss jointly determine whether you win or lose; there is no
uncertainty once those values are known. We now turn to a more interesting scenario,
which we also used in our experiment.

(7) You are about to pick a marble from a bag. There are two sorts of bags: X and Y.
a. 75% are of type X: They contain ninety blue marbles and ten white ones.
b. 25% are of type Y: They contain ten blue marbles and ninety white ones.

In all bags, nine of the white marbles have a red spot.

Against the background of this scenario, we are interested in the probability of (8).

(8) If the marble is white, it will have a red spot.

We take it to be clear that in this scenario the origin of the marble (i.e., whether the
bag from which it is drawn is of type X or Y) does not depend on its color. This affects
the value assignment according to Definition (6). Let ‘B’ denote the variable “bag,”
whose value can be either X or Y. The values of (8) are defined as in (9) (see Figure 4).

Vw(if W thenS) =
{
Vw(S) if Vw(W ) = 1
E[V (S)|V (W ) = 1, B = Bw] if Vw(W ) = 0(9)

Here as before, it is plausible to interpret the values assigned at those worlds at which
the marble is not white as those of the corresponding counterfactual (10).

(10) If the marble had been white, it would have had a red spot.

(10) is more likely if the bag is of type X, than if it is of type Y. The values assigned
according to (9) are .9 and .1, respectively, which seems intuitively right in this scenario.

3.1 The problem

Now it turns out that the assumption that these values are also assigned to the indica-
tive conditional (8) is at odds with the central premise of the probabilistic account: The
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expectation of those values (11) does not equal the conditional probability (12).8

E[V (if W thenS)] =P (S|WX)P (X) + P (S|WY )P (Y )(11)

=.9 · .75 + .1 · .25 = .7

P (S|W ) =P (S|WX)P (X|W ) + P (S|WY )P (Y |W )(12)

=.9 · .25 + .1 · .75 = .3

This is the problem our experiment addresses. To recapitulate: On the one hand, the
standard probabilistic account maintains that the probabilities of indicative condition-
als are the corresponding conditional probabilities, as in (12). On the other hand, our
assumption about the relationship between indicative and counterfactual conditionals is
that they are equivalent (though not equiprobable), and the examples suggest that the
proper value assignment for counterfactuals must be sensitive to causal relations. But
then the probability of the indicative in the present scenario is predicted to be (11). Has
the attempt to give a unified account of conditionals reached a dead end?

3.2 The hypothesis

The problem is not as serious as it seems — in fact, there is no problem. Kaufmann
(2004) discusses discrepancies like the one between (11) and (12) and argues that they ac-
tually offer a deeper insight, namely that indicative conditionals areambiguousbetween
two readings, one “local” and the other “global.” Kaufmann shows that this hypothesis
explains a number of cases that have been proposed in the philosophical literature as
counterexamples to the claim that the probabilities of conditionals are the corresponding
conditional probabilities, and furthermore, that under certain conditoins it isrational to
give a conditional its local interpretation.

We will not review those arguments here. However, it is useful to clarify what exactly
the difference corresponds to in terms of the intuition behind the Ramsey Test. Recall that
the interpretation of conditionals involves two steps, elimination and renormalization.
Kaufmann sees the difference between local and global interpetations in the way the
second step is carried out.

Figure 5 shows what is meant by this. After the temporary update with the informa-
tion that the marble is white, there are two ways of recalibrating the probabilities. Under
the local interpretation, the relative probabilities ofX andY are not affected. The prob-
abilities in each of the cells in the X/Y-partition are calculated locally. In the resulting
distribution (shown in the center), the probability that the marble has a red spot (i.e., the
black area in the figure) is large. Under the global interpretation, in contrast, the renor-
malization does affectX andY : In the resulting probability distribution (shown on the
right), their relative probabilities, too, have changed.

8 E[V (if W thenS)] = P (SW ) + P (S|WX)P ( W X) + P (S|WY )P ( W Y )

= P (S|WX)[P (WX) + P ( W X)] + P (S|WY )[P (WY ) + P ( W Y )]

P (S|W ) = [P (SWX) + P (SWY )]/P (S)
= [P (W |SX)P (X|S)P (S) + P (W |SY )P (Y |S)P (S)]/P (S)
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Figure 5: Renormalization after update withW (left): local (center) and global (right)

Formally, this difference corresponds to the use ofP (X) andP (Y ) in (11), as op-
posed toP (X|W ) andP (Y |W ) in (12), as weights. (Notice incidentally that thevalues
of the conditional are the same under both interpretations: Only the weights change.) In-
tuitively, the inference involved in the local interpretation can be paraphrased as follows:

(13) a. In the X bags, most of the white marbles have a red spot.
b. In the Y bags, few of the white marbles have a red spot.
c. There are more X bags than Y bags.
d. The probability of the conditional is more likely high than low.

The global interpretation, on the other hand, corresponds to the inference in (14). The
crucial difference lies in theabductivestep (to the most likely explanation) highlighted
in (14c).

(14) a. Suppose the marble is white.
b. There are many white marbles in Y bags and few in X bags.
c. So it is probably from a Y bag.
d. In the Y bags, few of the white marbles have a spot.
e. Then the marble probably won’t have a spot.

To sum up, the apparently contradictory predictions of Kaufmann’s probabilistic the-
ory of conditionals have upon closer inspection found a plausible explanation, one which
crucially relies on a rarely noticed variability in the interpretation of indicatives. But does
this variability really exist? Or have we bent our own intuitions to suit our theory-internal
concerns? This is the question we will address in the remainder of this paper.

4 Experiment

The purpose of the experiment9 is to test four predictions of the hypothesis outlined
above:

Prediction 1 (C1). If conditionals are ambiguous in the way described above, subjects’
probability judgments will show a bimodal distribution. In the marble scenario above,

9Due to constraints on space, we report here only the results of the first in a series of experiments. Further
results, which basically corroborate these findings, will be discussed in an expanded version of the paper.
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where the local and global interpretations of (8) yield appreciably different probabilities
(.7 and .3, respectively), judgments will vary between‘likely’ and‘unlikely’ . In addition,
if one of the interpretations is preferred, this bias will be reflected in the distribution of
responses.

Prediction 2 (C2). What distinguishes local and global interpretations is the abductive
inference step highlighted in (14) above. We therefore expect an increased number of
global (‘unlikely’ ) responses, compared to Condition 1, if the sentence is placed in a
context in which this abductive step is made salient, as in (15).

(15) a. If the marble is white, it will be from a Y-bag.
b. If the marble is white, it will have a red spot.

Prediction 3 (P). The update with the antecedent ishypothetical. We do not make
any claims as to how thepermanentupdate, upon learning that the antecedent is true, is
carried out. It is often assumed, however, that the latter proceeds by conditionalization
(Lewis, 1976). If this is the case, the judgments for the consequent (16) in a context
in which the subjects have been told that the marble has been drawn and is white, will
correspond to the global interpretation.

(16) The marble will have a red spot.

Prediction 4 (Cf). As discussed in Section 2, counterfactuals provide an important part
of the motivation of our account. We expect judgments about the counterfactual in (17),
in a context in which subjects have been told that the marble has been drawn and is not
white, to conform to the local interpretation.

(17) If the marble had been white, it would have had a red spot.

4.1 Method

Fifty-five undergraduate students of Northwestern University participated in the study for
course credit. Subjects were given a questionnaire in which the scenario was described on
four pages, one for each condition. They were instructed not to refer back to previous re-
sponses as they moved on. The descriptions of the scenario were almost identical, except
for the statement that a certain marble has been drawn in Conditions P and Cf. In each
condition, the description of the scenario was followed by three sentences containing the
target conditional and two filler items (however, in Condition C2, the sentence preceding
the target was the conditional used to prime the abductive inference). Subjects were then
asked to assess the probability of each sentence based of the information provided, by
circling an item on the scale‘likely, fifty-fifty, unlikely, don’t know’ . All subjects were
asked to consult only their linguistic intuitions, rather than using the numbers given in
the scenario for calculations.

4.2 Results

The data for conditions 1–4 are summarized in Figure 6.
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Figure 6: Results for conditions 1–4

C1. The bimodal distribution for this condition clearly supports our claim that the con-
ditional is ambiguous. In addition, we observe a higher incidence of‘unlikely’ judg-
ments, indicating a bias towards the global interpretation.

C2. We found a significant tendency for subjects to judge the conditional less likely in
C2 than in C1 (Wilcoxon:10 P = 0.0226).

P. Judgments of the probability of the consequent upon learning that the antecedent is
true differed significantly from C1 (P = 0.0328) but not from C2 (P = 0.9461).

Cf. As shown in Figure 6, the judgments for counterfactuals do not differ significantly
from those for C1 (P = 0.5975). Our prediction that they would differ from C2 is
supported, but only weakly: While this difference is greater than that to C1, it is not
statistically significant (P = 0.1333).

4.3 Discussion

Our findings confirm the hypothesis that conditionals are ambiguous in the way described
above. The global interpretation (under which the probability of the conditional is the
corresponding conditional probability) turns out to be the preferred one. Our assumption

10The Wilcoxon matched-pairs signed-ranks test compares judgments pairwise within subjects to determine
whether there is a general upward or downward trend.
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that the global interpretation differs from the local one in the presence of an abductive
inference step is supported by the observation that the former can be primed in a context
in which this abductive step is made explicit.

These results represent only one of a series of experiments using a more varied set of
scenarios and stimuli. We do not present the full range of the data in this version of the
paper, but they do confirm the conclusions we have reached here. They also address a
couple of rather obvious shortcomings of the present setup, which we would briefly like
to comment on.

First, the order in which the four conditions were presented did not differ between
subjects. This is problematic especially for C1 and C2, where we observed a higher
incidence of global interpretations in the latter. Based on the data we discuss here, the
possibility cannot be ruled out that this is merely an ordering effect, since C2 always
follows C1. However, in a later version of the questionnaire, we counterbalanced the two
conditions and obtained similar overall results.

Second, the marble scenario is abstract and somewhat artificial in its use of numbers.
This has the advantage of avoiding the interference of subjects’ world knowledge. On the
other hand, some subjects reported after the experiment that they had tried to calculate
conditional probabilities based on the numbers, in spite of the instruction not to do so.
In another experiment, we addressed this problem by showing subjects actual bags with
marbles of various colors. The results we obtained in this way were similar to the ones
presented here.

5 Conclusion

Although the range of data we discussed is limited, the results provide good empirical
evidence for the theory of conditionals we outlined in Sections 2 and 3 above. To reca-
pitulate once again, we started out with the common probabilistic interpretation of the
Ramsey Test, according to which their probabilities are the corresponding conditional
probabilities. On the other hand, the treatment of counterfactuals in terms of causal in-
dependencies implies that the prior expectation of their truth values cannot always equal
the conditional probability. Finally, the third claim is that indicatives and their counter-
factual counterparts are equivalent. We showed that if all three of these assumptions are
to be true, then indicative conditionals must have (at least) two possible readings.

The results suggest that conditionals do indeed have these readings. If the account
holds up to further scrutiny and exploration, it will provide an important missing piece in
the development of a the unified theory of conditionals.
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