Information Mapping

— Concept-based Information Retrieval based on Word Associations

Yasuhiro Takayama *, Raymond S. Flournoy f, Stefan Kaufmann *
Center for the Study of Language and Information
Stanford University

August 27, 1998

1 Introduction

Thinking and communicating are situated ac-
tivities that always occur within some partic-
ular context [3]. In the Computational Se-
mantics Laboratory at Center for the Study
of Language and Information (CSLI), directed
by Stanley Peters, we are developing models
of language, computation and inference which
take into account the context in which these
activities occur. We then apply these tech-
niques to problems in information retrieval,
natural language processing (NLP), and com-
munication among software agents.

Our various projects seek answers to a num-
ber of practical questions: How can I retrieve
the documents I want from the Internet? How
can I get a robot to understand my request
based on the current context? How can soft-
ware agents best communicate in order to
solve complex problems cooperatively?

This document describes one of our subpro-
jects: “Information mapping” (InfoMap, for
short).

*CSLI visiting scholar, Mitsubishi Electric Corp.
TComputer Science Department and CSLI
ILinguistics Department and CSLI

2 Information Mapping
and Word Space

2.1 Associative Information Re-
trieval

The goal of the InfoMap project is intelligent,
concept-based information retrieval. Cur-
rently, document retrieval from large text
databases—such as library card catalogs or
newspaper archives—is based on keyword
search. A query is posed as a list of words,
and any entries in the database which contain
any or all of those specific words are returned.
However, if we treat those query words not
as literal strings of letters, but as representing
concepts, then we can retrieve relevant docu-
ments even if they do not contain the specific
words used in the query.

Our basic approach, developed by Hinrich
Schiitze [13], begins by recording the fre-
quency of co-occurrence between words in the
text; that is, the number of times two words
appear “near” each other, e.g., in the same
document. The distribution of co-occurrences
between a word and some set of content-
bearing words then serves as a profile of the
word’s usage, and thus of its meaning as well.
By comparing the profiles of different words,

Table 1: An example of co-occurrence matrix

content-bearing words
words market | --- [Tast | ---
sunday 97 215
weekend 201 408

we can construct a measure of how related
those words are. Generalizing this word sim-
ilarity derived from lexical co-occurrence, by
comparing the query words’ profiles to profiles
generated for each document, we can return
documents which we judge to be conceptually
related to the query words, even if the words
themselves do not appear in the text — this is
what we call associative information retrieval.

2.2 Word Space and SVD

The lexical co-occurrences between a word
and content-bearing words are recorded in the
co-occurrence matriz which creates a high-
dimensional space. This abstract space forms
a concept space in which similar words (or
more specifically, words with similar distribu-
tional behavior) have similar vectors (See Ta-
ble 1).

The co-occurrence matrix suffers from two
problems: too many word features and data
sparseness. To solve these problems, we apply
SVD (Singular Value Decomposition) [6] to
the co-occurrence matrix as a tool for dimen-
sionality reduction and generalization. SVD
factors every m by n matrix A into

v » vt

mxXm mXnnxn

A =

mXn

(1)

where the left matrix U and the right matrix V
are orthogonal matrices and the singular ma-
trix ¥ is diagonal.

Equation (1) shows the full SVD in linear al-
gebra. We use the left orthogonal matrix U as

the reduced matrix, the output from the par-
tial SVD (Figure 1). The rows of the reduced
matrix — word vectors — approximate associ-
ations among the word senses. This reduced
space from the previous concept space is called
Word Space . It potentially reflects associative
behavior of words captured through second-
order co-occurrence information.

c

nxp
lexical co-occurrence matrix

p: # of content-bearing words
n: # of words concerned
psn

(partial) SVD

}

C =U X V (&srank(C) sp)

nxp nxk kxk kxp

normalized
row vectors of U

Word Space

Figure 1: Partial SVD for Word Space

Another use of SVD in information retrieval
is word by document matrix reduction for LST
(Latent Semantic Indezing) [2]. The difference
between Word Space and LSI is discussed in
[14].

By clustering the word vectors based on
their proximity, the Word Space can be used
for the word sense disambiguation and the-
saurus construction [13] [15].

2.3 SVD and Principal Compo-
nent Analysis

SVD is not a direct statistical technique but
rather a matrix factorization in linear algebra

[16]. When a matrix to be processed consists
of some statistical observations, SVD becomes
a powerful tool for statistical analysis.

SVD has a close relationship with princi-
pal component analysis (PCA), a feature re-
duction technique used in multivariate anal-
ysis. [9] [13]. Multivariate analysis concerns
associations among multiple variables (fea-
tures) with the goal of discovering relation-
ships among the multivariate profiles of the
data.

Suppose that matrix X is a p X n matrix
of observations (or a data matrix). If matrix
B is a matrix in mean-deviation form of the
data matrix X, and if A = (1/v/n—1)B7T,
then ATA becomes the wunbiased covariance
matrix S. (The superscript T’ denotes transpo-
sition). We can calculate the eigenvalues and
the eigenvectors by the eigenvalue decomposi-
tion from the p X p covariance matrix S.

Eigenvalue decomposition can be applied to
the square matrices only, but SVD can be ap-
plied to any rectangular matrices. Thus the
calculation of SVD is more convenient than
eigenvalue decomposition.

SVD can be used as a tool for performing
PCA. When we apply SVD to the matrix A,
the square of the singular values of A are the
p eigenvalues of the covariance matrix S, and
the right singular vectors [vy---v,] of A are
the coefficients of the principal components of
the data in the matrix X. Then v} X is the
i-th principal component (See Figure 2).

In Word Space , we directly apply SVD
to the original data matrix (i.e. lexical co-
occurrence matrix C' in our case) instead of
the matrix A, the mean-deviation form with a
coefficient 1/4/n — 1 (See Figure 1).

3 System Organization

The retrieval model of the InfoMap search en-
gine is based on a wector space model [12],

X =[X1... Xn]

pxn

. matrix of

statistical observations
p: #of features (variables)
n : # of observations

i |: sample mean

: mean-deviation
form

: unbiased
covariance matri

‘ Eigenvalue Decomposition ‘

(A=usvT] [8=04Q]
rl rl
2= A=
% Ao
Vi=[vi..vl | Q=[q ... g
3% (= A) :eigenvaue

Vi (=q) :eigenvector, i.e, coefficient of i-th
principal component

Figure 2: Relation between SVD and PCA

that is, the documents and the queries are
represented as vectors in the high-dimensional
space, just as the words are.

The search engine of InfoMap consists of the
document registration phase that creates the
Word Space (concept base) and the document
retrieval phase, similar to other information
retrieval systems. This section illustrates the
functions of these phases.

3.1 Word Space based on lexical
co-occurrence

The document registration phase of InfoMap
is the Word Space (concept base) construction

functions based on lexical co-occurrence in the
text corpus (Figure 3).

raw text corpus

stemming

[tokenized text corpus J

dictionary creation

ordered word-count
dictionary

v
list of

co-occurrence frequency calcuration ‘

content-bearing

v
words .
co-occurrence matrix
b (column file) (index file)
list of stop words

L

Figure 3: Word Space Construction

’ SVD(Singular Value Decomposition) ‘
12

[reducot mate (oraSpace

document vector calcuration ‘

document vectors

. Tokenization of text corpus

The first stage of processing produces a
tokenized corpus. The corpus (collection
of documents) can be tokenized by pass-
ing it through a tokenizer or a morpho-
logical analyzer. The stemming [10], [5]
in the tokenizer is optional.

. Calculation of word frequencies

The second stage of processing produces
a word count dictionary. The count dic-
tionary is a word list of tokens and their
frequencies in the corpus, ordered by fre-
quency of appearance of the tokens.

3.

Calculation of co-occurrence frequencies

For each of the 20,000' most frequently
occurring words in the corpus, a vec-
tor of 1,000 co-occurrence counts is cre-
ated, and these vectors serve as profiles
of each word’s distribution. The 1,000 en-
tries in the vector represent a set of 1,000
words which have been determined to be
content-bearing in the following sense.

The content-bearing words are chosen by
considering either the word’s total fre-
quency of appearance in the corpus, the
word’s part-of-speech information, or a
calculation of the relative concentration
of the word within the documents in the
corpus. This calculation — called the “dis-
persion” of a word — exploits the idea that
words which are not distributed evenly
throughout the documents in a corpus are
more likely to be content-bearing.

We choose the 51 to 1,050 most frequently
occurring words in the corpus as a basic
set of the content-bearing words.

Each time one of the 20,000 count words
appears within a window — a specific range
around one of the content-bearing words
— the appropriate count in its vector is
incremented. A word falls within range
if it is within a certain distance from the
content-bearing word, or if it is within the
same sentence, paragraph, or document
as the content-bearing word.

After all documents in the corpus have
been processed, the square root of each
count is taken to smooth out the effects
of extreme numbers, and the vectors are
written out to disk. So the actual (4, j)-
th element of the co-occurrence matrix is

!The numbers of the dimensions in this document
are example ones we used in our experiment. They can
be changed by setting the parameters in the system
configuration.

represented by a real value:

cij = P(coocij) (2)

where cooc;; is the co-occurrence count of
word ¢ within a window from a content-
bearing word j throughout the corpus,
and ¢ is the transformation of the count
data. We use the square root as the basic
transformation but other transformations
might be useful. The standard setting of
the window size is 51 (25 words to the left
and to the right of the current word).

. Analysis of the second-order

co-occurrence

The 20,000 vectors (the rows of the co-
occurrence matrix) represent points in a
1,000-dimensional space. To make com-
putations using the concept space more
tractable, it is necessary to lower the di-
mensionality of the space. The tool we
use for reducing the dimensionality of the
co-occurrence count matrix is SVD [6].

This calculation is done by feeding the
matrix through the SVDPack software
package? [1], a process which itera-
tively extracts the most important dimen-
sional features to approximate the high-
dimensional space with one of a much
lower dimensionality.

The left orthogonal matrix U, the out-
put of the partial SVD in Figure (1) is
now reduced to 100 dimensions. To cal-
culate the normalized vectors, the rows
of the reduced left matrix are divided
by their lengths, converting them to unit
vectors. These normalized left singu-
lar vectors serve as the word vectors u;
(:=1,...,20,000) in Word Space derived
from the lexical co-occurrence.

2Copyright 1993, University of Tennessee, dis-

tributed through http://www.netlib.org.

5. Creation of document vectors on Word

Space

(a) Each document is processed into a
document vector of length 100. This
is done by reading in the individ-
ual word vectors previously calcu-
lated for the 20,000 most frequently
occurring words in the corpus, and
summing the normalized vectors cor-
responding to each of the words in
the document:

d; = Z Wij W, 3)

where d; is the document vector for
document j, w;; is the weight for
word ¢ in document j, and u; is the
word vector for word ¢ occurred in
document j. The default weight w;;
is 1. The tf - idf (term frequency -
inverse document frequency) weight
is used in [14].

Optionally, one may choose to disre-
gard the vectors of stop words, cer-
tain words that are expected to be so
general or so common that they will
not contribute informatively to the
vector. We use the 1 to 50 most fre-
quently occurring words in the cor-
pus as a basic set of the stop words.

After document vectors are calcu-
lated for each of the documents in
the corpus, they are written to disk
with the byte location of the docu-
ment.

(b) The 100-dimensional space which
these vectors occupy embodies the
document concept base derived from
the corpus, and each of these vec-
tors represents a specific location
within this space corresponding to
the meaning or subject matter of

the document. Furthermore, the for-
malism predicts that vectors which
lie close to each other in the con-
cept space correspond to documents
which are somehow related in sub-
ject matter.

For simplicity, our explanation has included
individual words as the dimensions of the co-
occurrence matrix. Optionally, we also choose
the statistically significant phrases based on a
x2-test [11] that is applied to a contingency
table of the neighboring word counts [15].

To find the pairs that most frequently
“stick” together, we count all neighbor words,
and sort them by frequency, then calculate
their x2-value. A certain number (e.g. 5,000)
of the top x2-valued words are considered
sticky pairs. We also allow these sticky pairs
to be elements of the row dimension of the co-
occurrence matrix.

3.2 Document retrieval on Word
Space

The main stages of the document retrieval
phase of InfoMap are the query vector calcula-
tion, the closeness calculation and the actual
retrieval (Figure 4).

ordered word- stemming

list of stop words [—» query vector

calculation
word vectors
WordSpace
closeness
document U(?ctors calculation
(doc. location)

linked list of

document records
(score, location)

retrieval
routine

retrieved
documents

Figure 4: Document retrieval on Word Space

1. Query vector calculation
To retrieve the documents from the cor-
pus using the associations in Word Space
, a query in the form of a list of words (ei-
ther entered interactively or stored in a
file) is translated into the corresponding
set of the normalized word vectors, and
these are summed to form a query vector:

q= Z wiag (4)

where q is the query vector, w; is the
weight for word 4 in the query (default
weight is 1), and u; is the word vector for
word ¢ occurred in the query.

2. Closeness calculation

The query vector is then compared with
each of the document vectors and the doc-
uments whose vectors lie closest to the
query vector are returned.

The closeness of two vectors (the query
vector q and an document vector d;) is
determined by calculating the cosine of
the angle between the vectors 3

.d.
closeness(q,d;) = 949

= Taliam @

This routine requires the document vec-
tors (d;’s) as its input and returns a
linked-list of document records, ordered
by closeness with the query vector(q).
Each document record contains the cosine
score for the document and the byte loca-
tion of the document in the corpus.

3. Retrieval and display of documents

The retrieval routine simply goes to the
appropriate location in the document
records and displays the documents as re-
quested by the user.

Query vectors and document vectors are
represented as normalized word vector sums
(centroids). These vectors are called context
vectors in general.

31n order to find similar words, the closeness (prox-
imity) of word vectors are also calculated by the cosine
measure.

4 Current and Future

Work

Associations in Word Space are computed
from unannotated text corpora in an unsuper-
vised way as described in the previous sections.
We would like to demonstrate that these word
associations are useful for associative informa-
tion retrieval.

Our experiments with InfoMap thus far
mainly have used collections of newswire ar-
ticles as a source of general associations. We
are currently investigating how different train-
ing corpora affect the resulting search engines,
in particular whether the use of personal email
to train a search engine produces one which
is tuned to reflect that user’s interests — per-
sonal associations. A preliminary study with
approximately a dozen human subjects is dis-
cussed in [4]. The domain-specific associations
from topical corpora such as medical texts [7]
is another interesting experiment.

In addition, we have applied the informa-
tion mapping technique to term-list transla-
tion between English and Japanese [8]. As a
future research topic, we are hoping to inves-
tigate how the concept space created by our
technique can be used to do cross-lingual in-
formation retrieval.

References

[1] Michael W. Berry: Large Scale Singular
Value Computations, International Jour-
nal of Supercomputer Applications, 6:1,
pp. 13-49, 1992.

[2] Scott Deerwester, Susan T. Dumais,
George W. Furnas, Thomas K. Landauer,
and Richard Harshman: Indexing by la-
tent semantic analysis. Journal of the
American Society for Information Science,
41(6):391-407, 1990.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10] M. F. Porter:

Keith Devlin: Logic and Information.
Cambridge University Press, 1991.

Raymond S. Flournoy, Ryan Ginstrom,
Kenichi Imai, Stefan Kaufmann, Genichiro
Kikui, Stanley Peters, Hinrich Schiitze,
Yasuhiro Takayama: Personalization
and Users’ Semantic Expectations. ACM
SIGIR’98 Post-Conference Workshop on
Query Input and User Expectations, Mel-
bourne, Australia, August 28, 1998.

William B. Frakes: Stemming algorithms.
In W. B. Frakes and R. Baeza-Yates
(Eds.), Information Retrieval, Data Struc-
tures and Algorithms, pp.131-160, Engle-
wood Cliffs, NJ, Printice Hall, 1992.

Gene H. Golub, Charles F. Van Loan: Ma-
triz Computation. 3rd ed., The Johns Hop-
kins University Press, 1996.

W. R. Hersh, C. Buckley, T. J. Leone, D.
H. Hickam: OHSUMED: An interactive
retrieval evaluation and new large test col-
lection for research. Proceedings of the
17th Annual ACM SIGIR Conference 94,
pp- 192-201, 1994.

Genichiro Kikui: Term-list Translation
using Mono-lingual Word Co-occurrence
Vectors. Project Note, COLING-ACL ’98,
August 10-14, 1998.

David C. Lay: Linear Algebra and its ap-
plications. revised ed., 1997.

An algorithm for suffiz
stripping. Program, 14, pp.130-137, 1980.

[11] Fred L. Ramsey, Daniel W. Schafer: The

Statistical Sleuth — A Course in Methods
of Data Analysis. Duxbury Press, 1997.

[12] Gerard Salton, A. Wang, C. S. Yang: A

vector space model for automatic indexing.
Communications of the ACM, 18, pp.613-
620, 1975.

[13] Hinrich Schiitze:

[16] Gilbert Strang:

Ambiguity in Lan-
guage Learning: Computational and Cog-
nitive Models. PhD thesis, Stanford Uni-
versity, Department of Linguistics, July
1995. (Revised thesis, Ambiguity Resolu-
tion in Language Learning: Computational
and Cognitive Models, CSLI Lecture Notes
71, CSLI Publications, 1997).

[14] Hinrich Schiitze, Jan O. Pedersen: A

coocurrence-based thesaurus and two ap-
plications to information retrieval. Infor-
mation Processing & management, Vol.33,
No.3, pp.307-318, 1997.

[15] Hinrich Schiitze: Automatic Word Sense

Discrimination. Computational Linguis-
tics, Volume 24, Issue 1, pp.97-123, March
1998.

Introduction to Linear
Algebra. Wellesley-Cambridge Press, 1993.

