Dynamic Context Management

STEFAN KAUFMANN

This paper provides a treatment of modal subordination, the interpre-
tation of a string of discourse in a pre-established, but implicit context.
The idea is to make a dynamic modal logic sufficiently rich to maintain
hypothetical information states across sentences. The interpretation of
a sentence as modally subordinated then arises due to the context in
which it is encountered, rather than the sentence itself or some special
processing mechanism.

1 Introduction

The phenomenon of modal subordination has presented a problem for
a variety of formal accounts of discourse processing. Well-known exam-

ples include (27) and (28) from Roberts (1989):

(27) a. If Edna forgets to fill the birdfeeder, she will feel very
bad.
b. The birds will get hungry.

(28) a. If John bought a book, he’ll be home reading it by now.
It’ll be a murder mystery.
. #It’s a murder mystery.

o

@]

These have in common a first sentence that is understood as “setting the
stage”, or providing the context, for the interpretation of the second.
This dependence of the latter on the former causes a simple, sentence-
by-sentence interpretation mechanism either to assign the wrong truth
conditions to the sequence as a whole or to predict the sequence to
be uninterpretable. (27), for instance, may be true even if the birds
do not get hungry. In (28)b, a book in the first sentence serves as the

*I am grateful to Stanley Peters, Johan van Benthem, Frank Veltman, David
Beaver, Edward Flemming, the audience at the 11th Amsterdam Colloquium and
the 7th CSLI Workshop, as well as two anonymous reviewers for helpful discussion
and comments.

Formalizing the Dynamics of Information
Martina Faller, Stefan Kaufmann & Marc Pauly (eds.)
Copyright ©2000, CSLI Publications

171

172 / STEFAN KAUFMANN

antecedent of it in the following, even though the former is interpreted
as an implication and thus assumed to block outside anaphoric access
to its constituents.

Generally in examples like these, letting A, B and C' translate into
the meaning representations ¢, ¢ and Y, respectively, an adequate pro-
cedure would map expressions like (29)a to translations as in (29)b:

(29) a. “if A then B; will C”
b. o —ie—x

This i1s only an informal approximation of the desired result, but it is
evident that (29) correctly predicts the birds to be hungry if Edna for-
gets to fill the birdfeeder in (27), as well as the anaphoric link between
it and the book bought by John in (28).

The question that all formal accounts of modal subordination have
to answer is how this sharing of a conditional antecedent is brought
about and why modally subordinated material is interpreted like the
consequent in a conditional. There are two ways of looking at this which
differ in a subtle, but important respect: One could assume that the
sentences must somehow be interpreted in a special way, for instance
by linking them anaphorically among each other or by arranging their
representations in a larger structure. Or one could say that the sen-
tences simply mean what they normally mean and that the subordi-
nating effect is due to special properties of the context in which they
are evaluated.

1.1 Representations

Roberts (1989) discussed—and dismissed—an obvious solution for sen-
tences like those discussed in Section 1, which she dubbed the “inser-
tion approach”: allowing for a special mechanism that conjoins the two
subordinated clauses in one embedding structure as in (30).

(30) a. “if A then B; will C”
b.p—=>¢YvAYx

Although (30) does provide an accurate account for examples like (27)
and (28), it does not work properly in (31):

(31) a. A thief might come in.
might ¢
b. He would take the silver.
would 9
c. Olp A1)
d. (Ce) A (e = ¢)

DyNaMIic CONTEXT MANAGEMENT / 173

(31)c, obtained by “insertion”, predicts the discourse to hold true even
of cases in which a thief breaks in and does not take the silver, which is
ruled out by the English mini-discourse. A more appropriate translation
would have been like the one given (31)d.

Roberts’ conclusion was that examples like (31) make it impossible
to find a straightforward structural account for the phenomenon. Her
proposal is to appeal to the notion of accommodation (of the missing
antecedent) for an explanation: In constructing the representation of
the discourse, information is used that is not drawn from the actual
linguistic material in a systematic way, but obtained by some extralin-
guistic reasoning process. Once Roberts postulated accommodation for
examples like (31), she generalized the treatment to all the cases, even
the ones above where the insertion approach would have sufficed.

To many, invoking accommodation amounts to admitting defeat,
and since Roberts’ proposal, attempts have been made to take control
of the phenomena within structural theories of discourse processing.
There is a strong sense that the effects of modal subordination are in
fact predictable and systematic, and that they are more closely tied to
the structure of the discourse than accommodation would predict.

One recent proposal (Frank, 1996) represents a direction of research
that regards modal subordination as essentially anaphoric: The symbols
representing occurrences of sentences are labeled and can be referred
to by variables of the appropriate type (“context referents” in Frank’s
L[abeled]DRT). Figure 13.1 shows one of Frank’s examples (ex. (79),
p. 131), here given as (32). In this notation (defined in section 3.2 of
her dissertation), upper-case letters represent context referents, 4+ the
update relation between DRSs and :: the relation between a context
referent and the DRS that is associated with it.

(32) a. If a thief breaks into the house, he will take the silver.
b. If in addition he finds the safe, he will try to open it.

This account allows for multiple uses of information drawn from a single
occurrence of a linguistic expression, and 1t does so in a manner similar
to the treatment of pronominal coreference.

It is not clear, however, that modal subordination does indeed have
all the properties of anaphora. In particular, it seems to be more local
than the latter: intervening material “closes off” the modal context.!

IThis claim is a bit strong. Apparent counterexamples are sometimes discussed in
which modally subordinated contexts can span across statements in factual mood;
see Roberts (1995); Kibble (1998). I cannot discuss these cases at length here,
but based on those examples, I would maintain that the intervening material is
tolerated only if it is relevant to and plays a particular rhetorical role—generally

174 / STEFAN KAUFMANN

FGH
ywu
Fu house(y) silver(w) safe(v)
G) G’.‘ X’
X'=F
X
G:uF + thief(x) . the-silver(w)
G X+ the-house(y) OG = take(x,w)
break-in(x,y)
H H” X”
HuG| L 9
s s » the-safe(v) »
R [m]] try- 4
H =X + finds(x,v) H try-open(x,v)

Figure 13.1: Frank-style Labeled DRS for (32)

Nor is it clear that processing a modally subordinated utterance relies
on the same kind of procedure of “finding a suitable antecedent” as
pronominal expressions.

In the next section I will step back and take a different approach,
starting from common intuitions about the way these constructions are
understood.

2 Dynamics

I will present the main idea in a simple propositional fragment.

Let a set I of possibilities be given. Possibilities correspond to total
truth assignments to atomic propositions. The set of information states
S is the powerset of /. Update of information states is interpreted as a
function on S:

(33) sle] = {i

[;] = sle
¢l =

sl > 9] = {ZESIMZ[‘]OHES[@#)]}
s[Op] = {i € 5|3 € 5.1 € s[g]}?

In this simple system, consistency and support are defined as expected:

€ sli(p) = 1} for atomic ¢
]

explanation—in the conditional that arises from the modal subordination. If that is
correct, than the stack formalism could be loosened somewhat to account for those
configurations, without abandoning the general right-frontier effect.

2The somewhat non-standard definition for Gy needs an explanation. Stating

DyNaMIic CONTEXT MANAGEMENT / 175

(35) Let s be an information state and ¢ a proposition.
a. ¢ is consistent with s iff s[p] # 0.
b. ¢ is supported by s iff s[¢] = s.

2.1 Temporary States

Consider what it takes to interpret the following example from Groe-

nendijk et al. (1996, 203):

(36) a. A wolf might come in.
b. It would eat you first.
Ow; would

The procedure is usually assumed to consist of (i) temporarily adding
information to the present state and (ii) examining the outcome. Cru-
cially in cases of modal subordination, the auxiliary state derived in
the process is available for the immediately following discourse.

In a brief informal discussion of this kind of operation, Groenendijk
et al. (1996, 204) talk about such temporary states as being kept “in
memory” or “removed from memory”. This is a nice intuitive metaphor.
At the same time, it demonstrates the need to think of discourse pro-
cessing as happening to something bigger than an information state
in the usual sense, viz. an environment that has “memory” in which
entire states can be stored and retrieved. This also requires a way of
distinguishing between and referring to states.

In the above example (36), starting out from an initial state s, the
two steps are as follows: First, update s with ¢, thereby obtaining
a state s’ in which ¢ is supported. Second, examine this new state
and check that it is non-empty. Keep the temporary state s’, which
supports ¢, available for further operations. The interpretation of the
next proposition i then operates on this “secondary” state, s’.

The result of processing (36) is a state in which it is known that

that ¢ is possible in a state s is equivalent to stating that ¢ is not known to be
false. If ¢ were known to be false, then an update with —¢ would not add any
new information, i.e., s would support ¢ (cf. Def. (35).) So the update with O
is successful if s demonstrably does not support —@. The condition that there be
a possibility in s which would be eliminated by an update with —¢ does precisely
that.

The definition for implication is similar to the one in Groenendijk et al. (1996);
it can easily be verified that the equality in (34) with an alternative formulation
similar to the one in Zeevat (1992) holds.

(34) sle =] = s[=(g;=¥)]
= (s = s[e]) U s[es ¥]

176 / STEFAN KAUFMANN

(37) a. a wolf might come in (Oy) and
b. if a wolf comes in, it eats you first (¢ —)

How does the implication in (37)b come about? The interpreter has
derived a temporary state s’ by applying ¢. In other words, s’ is the
set of all possibilities obtained by updating s with ¢. Next, the hearer
updates s’ with 1. This amounts to ruling out all the possibilities in s’
where 1 does not hold. But this must have an effect on s as well: The
hearer now knows that those possibilities that were removed from s’
are not available, so those possibilities of which they were descendants
are removed from s.

This result provides the intuitive foundation of the treatment pro-
posed here. Processing a modally subordinated statement is a normal
update on a state; its interpretation as the consequent of an implication
follows from the fact that that state is an “auxiliary” one and updates
on 1t are reflected in updates on the “main” state.

So the last update, with [¢ — %], is indirectly obtained from a
statement about the effect of [¢/] on s’. In other words, the information
that ¢ — % holds is recovered from the information that the auxiliary
state supports 1. In general, gaining information in one state through
the use of an auxiliary state means learning in the former about the
latter.

It will be useful to have a way of talking about this process of learn-
ing in one state about another. For this we can inter-define the relations
of implication and support: In any given state s, information about a
proposition ¢ is information about the state obtained by applying ¢ to
s. To know in state s that ¢ implies ¢ means to know that s[¢] sup-
ports 1. To know that —¢ means to know that s[e] is the empty state.
And finally, to know that ©@ means to know that s[p] is non-empty.?

Conversely, to know in state s that state ¢ supports ¢ means to
know that any proposition that, when applied to s, yields #, implies 9.
We can use this correspondence to define a helpful piece of notation.
Given two states s and ¢ and a proposition ¢, ; such that s[e, ;]t, we
can define an expression s[t F 1] which may be read as “learning in
state s that state ¢ supports ¢” as in (38)a and obtain the equivalence

in (38)b:

(38) a.stFy]={ics|igtoriectl]}
b. st F Y] = sles s — Y]*

3Note that the definitions given in (33) for the relevant formulae in fact encode
this intuition and even mention s[¢] explicitly.

DyNaMIic CONTEXT MANAGEMENT / 177

Note that since this paper is only dealing with monotonic updates, if
there is a proposition ¢;; as defined, we can be sure that ¢ C s. To
facilitate a uniform handling of implication and negation, the latter can
also be rewritten in this way. I will use two more symbols to refer to
two special propositions. The first, L, reduces any state to the empty
state (). Updates involving it are defined in (39)a:

(39) a. s[L]=90
b. thklet=10
c. stk Ll]={iesli¢gtorict[l]}
= 5[7ps 4]

Thus given the obvious consequence in (39)b, we can define negation
as implication as in (39)c. In this definition, since {[L] = @ for any ¢,
the latter part of the descriptor becomes trivially false and the result
of the update is precisely the set of possibilities in s that do not survive
int ie s—t.

Something similar can be defined for the possibility operator <.
From the definition of support, we have (40)a; (40)b follows, and (40)c
is just for notational convenience.

(40) a. tFLot#0

b. st L] ={ie€s|F €s.i' et}

= 5[OCps 1]

e tFTIE KL
There is still a sense in which the definitions in (39) and (40) are fun-
damentally different: The former can actually add information to the
input state by eliminating some, but not all possibilities. The latter can
only return the input itself upon success or the empty state, indicating
failure. These different behaviors are a consequence of the set-up of the
current system: Since the only operation on states is elimination of pos-
sibilities, a statement that ¢ is empty can be made true by eliminating
all possibilities that are in . A statement that ¢ 1s not empty, on the
other hand, cannot be made true if it is false, since there is no way of
“putting back” possibilities.

3 Stacks

Consider two information states s and ¢ and a proposition ¢ such that
s[p]t. The last section gave a definition of the expression s[t F 1] as
“learning in state s that state ¢ supports ¢”, which amounts to “learn-
ing in state s that the proposition ¢, which leads to ¢, implies #.”

178 / STEFAN KAUFMANN

This also provides as a special case a way of rewriting the standard
expression s[e — Y] as s[s[¢] F ¥].

Modal subordination is like implication in that it involves “learning
in state s that state ¢ supports ¢”. It is different in that state ¢ is
not explicitly introduced, but assumed to be present in the context,
introduced at an earlier point. This can be modeled by keeping both s
and ¢ intact and available.

The context in which a proposition is interpreted is a stack of states,
defined, for this example, as the sequence (¢, (s)). Given that a stack el-
ement 1s invariably derived by normal update from the one underneath
it and update in the system is a monotonic elimination procedure, the
order of the states in the sequence implies that ¢t C 5.5 In such a setting
we will call ¢ an auziiary or temporary state. Let us call the stack o.

If we apply a proposition ¢ to o, the output is a stack 7 = (', (s)),
where ' and s’ are the results of updating ¢ and s, respectively. The
update consists of two parts: ¢[¢)]t' and s[t F ¢]s’. The operation on
t is a standard update and if it is informative, it will remove some
possibilities from ¢; crucially, these possibilities are removed along with
their ancestors in s. Both these steps combined have the effect that in
t’ it is known that 1 and in s’ it is known that the proposition that
leads to ¢, viz. ¢, implies .

Some notational conventions will make it easier to formulate these
procedures for the general case.

Definition 1 (Stacks) The set of stacks is defined as follows:
a. If s is an information state, then (s) is a stack.
b. If s is an information state and o is a stack, then (s, o)
is a stack.
c. Nothing else is a stack.

To simplify the definitions, we can define the cardinality of a stack to
be the number of its members and refer to its elements by counting
from the top down, thus for a stack o = (s, {t)), |o] = 2, o9 = s and
g1 = t.

Stacks are used in this paper with the assumption that the bottom
state represents the indicative, “original” state, while all others are
“temporary.” An empty stack is not defined, nor can the operations
below produce one, since all interpretation by definition takes place in
some state.

5This is, of course, only true for factual conditionals. Counterfactuals are not
dealt with in this paper, although an extension of this formalism to include a se-
mantics of modal base and ordering source in the spirit of Kratzer (1991) should
not be too difficult.

DyNaMIic CONTEXT MANAGEMENT / 179

To refer to operations on such stacks, I introduce a set of operators.
The three main ones are for pushing a state ([]7), making an asser-
tion ([];), and popping the top state from the stack ([</]). These are
sufficient for the translation of if-then clauses.

Definition 2 (Stack Operations) The set of stack operators
includes the following:

a. Assume: (s,) [¢]T (s[e], (s,0))
b. Conclude: (s,o)[¢]y (sl¢], T),

where |o| = |7|=n
and o;[s F ¢]r; foralli, 0<i<n

s)yif o =
¢ Pop: {s,0) [V]= {<0'> otherWEZe
These definitions determine the result of applying the operations on
the input stack. [¢]" adds a new element at the top which corresponds
to the result of updating s, the top element of the input stack, with .

[¢], updates the top element with ¢. As discussed above, this makes
the information that ¢ is implied by the proposition leading to the top
element available to all elements further down.

Similarly for the “pop” operator [v/]: If there are two or more
elements on the stack, it removes the top element. It has no effect if
there is only one state left in o.

It is straightforward to build a procedure that enforces these con-
ditions on the output, for example by recursion on the stack, but that
is not the concern of this paper.

3.1 Illustration

We can now use the operators defined above to demonstrate how the
logic works, keeping in mind its application to modal subordination.
First, implication, commonly translated as in (41)a, can now be rede-
fined as a two-step process of setting up a hypothetical context and
making a statement about it, as in (41)b:

(41) a. sfe =]
b. s (@]t [¢],

The update in (41)a consists in removing those possibilities from s
which have descendants in s[¢], but not in s[¢][]. In (41)b, the effect
on s is the same, but in addition to that a new state is introduced and
remains in the environment. We can visualize this as in (42).

180 / STEFAN KAUFMANN

(@Ms>wp<%ﬂ>m¢<£ﬂ%%>

The result is, as in (41)a, the removal from s of all those possibilities
that have descendants in s[¢] but not in s[¢][1/]. And indeed, if we apply
the “pop” operator [v/] to the output state once, the result will be a
single state equivalent to the one in (41)a, as the reader may verify.
Now, however, the state s[¢][¢] is still in the stack, and subsequent
updates will yield different results. Before showing this, it i1s useful to
note the following:

(43) a. If s[p]t, t[y]t" and s[t =]s’, then s'[p][¢]t.6

Now suppose, for instance, that the next update is [x];. Let us ab-
breviate s[s[¢] F] as s’ and s[p][¢)] as t'. The stack undergoes the
changes shown in (44):

(5) e ()

The operation that takes s’ to s'[t' £ x] is the removal of all those
possibilties that have descendants in ¢’ but not in ¢'[x]. But since ¢’ =
s'[¢][¢], this is equivalent to removing all those possibilities that have
descendants in 5'[¢][4] = o/[¢; 4], but not in 5'[¢][¢]0] = o¢3 ¥l
From this and the definition of implication it is obvious that the end re-
sult is the equivalent of obtaining s[t’ - x] by an update with [(¢;¢) —
x]-

This last result is what makes this logic suitable for modal subor-
dination. The next section will elaborate on this.

3.2 Other modes

For the treatment of statements expressing possibility, I define a variant
of the “Conclude” operator, “Conclude2”:

(45) Conclude2: (¢, (s, o)) [¢]y (¢, (s[¢e], T)),
where |o| = |7|=n
and o;[s F ¢]r; foralli, 0 <i<n

The only difference between the one in Definition 2 and this is that
this leaves the top element of the stack untouched. This is necessary
because in the current setup an update of the form s[T] is not defined
and cannot easily be defined analogously to the other updates. Note
also that []y is not defined on singleton stacks. One can argue that

DynaMic CONTEXT MANAGEMENT / 181

this is intuitively reasonable, but in the present system it has little
significance since the operator is always invoked immediately after a
pushing operation (see Section 4 below.)

As an example, consider the update in (46).

oo (o1 () o (gl)

Given the definitions, this returns s in the bottom element just in case
s[e] is not empty, and the empty state otherwise. s[¢] is then left in
the environment for modal subordination. A more concrete example
follows below.

4 Application

With the stack operations defined in the previous section, we can now
translate proposition-embedding linguistic expressions. For simplicity,
I collapse would ¢ and will ¢ and replace them with the expression Y,
because even though they cannot be used interchangeably in all cases,
their meaning under modal subordination is essentially the same.

Definition 3 (Translations) A translation [[-]] maps linguistic ex-
pressions to stack operations:

a. el = [V]I* el

b. [anyway] = [[however]] = ...= [v] T
c. [lthen o] = [Vell = [¢]

d. [if ¢ = [¢]"

e. [note] = [¢]" [L]y

f. [might ¢] = [¢]" [T]y

These definitions mostly just reiterate what was developed above. The
first two highlight a point where this formalism does not make any
predictions: Discourse connectives such as those in the rules, and in-
deed the simple indicative to some extent, induce the popping of some
indefinite number of stack elements. Saying that either exactly one or
all but one are popped would be too rigid; it seems, rather, that these
items mark junctions at which the whole stack is open to re-evaluation,
and the hearer chooses the state to which the following material is most
sensibly applied.”

"How exactly such a choice between candidate states is to be made is an open
question at this point; presumably some measure of utility of update or value of
information will be needed. This goes beyond the scope of this paper.

182 / STEFAN KAUFMANN

To illustrate, consider again the case of example (27), repeated here
as (47), and let us represent it as in (47)c. According to the definitions
above, this translates into the sequence of stack operations in (47)d:

(47) a. If Edna forgets to fill the birdfeeder, she will feel very
bad.
b. The birds will get hungry.
c. if ¢ then ¢ ; ¥y
d []™ 5 [l s I

We have seen above that the problem with this example is that the sec-
ond sentence does not assert that the birds will get hungry, although
it would do so in isolation. Now we see that the sequence of updates
in (47)d, which is similar to the example in Section 3.1, does predict the
correct inference patterns. Given an initial stack (s), we saw in the pre-
vious section that s is updated with [t F ¢] and [t' F x], where s[¢]¢ and
t[¢]t', and that these updates are equivalent to [¢ — ¥][(¢;¢) = x].
The whole process is depicted below (spread over two lines for read-
ability).

(48) a (s) lolf < e > e < it >

s[g)[Y] sl
b < s[sle] F vl > b < slsle] F ¥llsleliw] F 1] >

Now suppose that s has a possibility ig in which Edna fills the birdfeeder
and the birds do not get hungry. Clearly, ¢y is not removed by any of
the update operations, since both are conditional on ¢, viz. that Edna
fails to fill the birdfeeder. Therefore the resulting bottom element of
the stack, s[¢ = ¢¥][(¢; %) — x], does not support x (i.e., it does not
follow that the birds will get hungry.)

Examples involving possibility are handled as well. Here the “Con-
clude2” operator [-]y, whose sole difference from “Concludel” ([-];) is
that it leaves the top element of the stack unchanged, is put to work.
Consider again example (31), repeated here as (49):

(49) a. A thief might come in.
b. He would take the silver.
c. might ¢ ; ™
d. (@™ [Tly; [¥h

The choice of the two “Conclude” operators in this order is dictated
by the translations in Definition 3 above. According to the definitions
in 2, then, this translates into the following sequence:

DyNaMIic CONTEXT MANAGEMENT / 183

o0 v (ot () o (g)

b'< ol] > a < ot T >

The final result of this is a state in which it is known that (i) a thief
might come in and (ii) if a thief comes in, he takes the silver. This is
the desired result.

4.1 Referent systems

Nothing has been said so far about the way a corresponding first-order
system would work. A previous version of this paper was implemented
fully in the referent-system model of Groenendijk et al. (1996), but as
two reviewers rightfully pointed out, that was a complication which
contributed little to the main point. The interested reader can ver-
ify that by implementing possibilities not as worlds, but as pairs of a
referent system and a world, the present system works without much
further modification. The only required additional change is that the
subset relation that orders the elements in a stack has to be redefined
as the relation of extension: While updates always decrease the number
of worlds in the state, an update involving an existential quantifier may
increase the number of possibilities. For a complete description of the

system, see Groenendijk et al. (1996, 185-195).

4.2 An Amendment: xor

It was already pointed out by Roberts (1989, 702-704) that the possible
anaphoric relationships between the disjuncts of exclusive disjunction
pose a challenge to simple DRT approaches: In (51), it is clear that
the pronoun it is interpreted as coreferential with the bathroom in the
first disjunct—yet the latter’s embedding under negation would seem
to render it unaccessible.

(51) a. Either there is no bathroom in the house, or it’s in a
funny place.
b. ¢ xor 9

Kamp and Reyle (1993, 185-190) agree with Roberts (1989) and pro-
vide for this construction an essentially elliptic account, stipulating that
the second part of the sentence is given an accommodated copy of the
material embedded under the negative operator in the first part—that

184 / STEFAN KAUFMANN

which is referred to by the implicit otherwise in such sentences. More
generally, they suggest to “add” (not “copy”) the negation of the first
disjunct if the latter is not already negated, and if it is negated, to add
whatever is embedded under the negation. This rule is, however, only
briefly touched upon in the text and not elaborated further.

Frank (1996), in a variation on this theme, proposes a rule that gen-
erally makes two instances of the first disjunct available and embeds
the second occurrence under negation.These two occurrences are repre-
sented by two context-referents. An external condition stipulates that
they refer to the same antecedent. This 1s combined with a second rule
cancelling double negation along the lines of Kamp and Reyle (1991) (a
later, related treatment can be found in Krahmer and Muskens (1995)).
This procedure disembeds, as 1t were, the copy of the first disjunct and
makes the occurrence of bathroom in it accessible to the pronoun.

These examples are also related to cases of split modality as dis-
cussed by Frank (based on earlier discussions by Landman): In a phe-
nomenon that is closely related to typical cases of modal subordination,
more than one thread of discourse can be maintained in parallel:

(52) a. You will stay unmarried, or you will marry a tramp.
b. You'll become a nun, or the tramp will beat you regu-
larly.
c. Either way you’ll have a miserable life.

It is easy to see intuitively how these examples should be dealt with in
the present framework: Where Frank uses discourse referents with the
same antecedent and an added “structural/rhetoric constraint” called
parallel(G1,G2) (G1, G2 being context referents), the stack formalism
should keep both of the relevant contexts in store for later use, forking
off, as it were, two threads of discourse. Implementing this, however,
requires a substantial change to the system, viz. adding a new dimen-
sion: The stack elements will have to be able to hold more than one
state, and those states have to be ordered. Thus a stack element can
itself be a sequence of states:

(53) a.
b. (s,t)[p xor Y]= (s
c. lpxor Y] = [p]y xor [¢]y

For “bathroom” sentences, assuming the equivalence in (53)c and
assuming that the interpreter knows how to make the choice between
the operators [-]; and []y, one would obtain (54):

DyNaMIic CONTEXT MANAGEMENT / 185

s[¢] s[¢]
(“”S>W”<s >“m”“<@Mﬂhm$MFw>

To be sure, although such an alteration would work for the examples
above, it might turn out that as it stands it would be no less stipulative
than previous proposals. It remains to be seen whether the framework
proposed here can offer a substantial improvement in these cases.

5 Further Issues

Using stacks in dynamic treatments of discourse is not a new idea. An
example is Zeevat’s implementation of DRT in a stack-based frame-
work (Zeevat, 1992). The basic idea is very similar to the one pursued
here. Zeevat’s system pushes auxiliary states during the processing of
a sentence and removes them immediately after they are used. The
main difference is that in the present system, they stay in place until
they are cleared by an explicit additional operation. There is also a
more subtle difference in the way implication is encoded: If we used
Zeevat’s system, the output stack would contain two additional states,
one corresponding to the antecedent, the other to the consequent (see
the definition in Note 2.) Thus assuming an appropriate definition of
the stack operations, and simplifying the representation somewhat, we
would have the following picture for a simple update with ¢ — -

Sl
(%)<s>ﬂw<s?]>mmw< ﬁ?hﬂn>
s[=(p; =

While one could claim that this conceptually simplifies the treatment
of conditionals (the downward proliferation of the update is a simple
difference operation), it is not clear how the parallel behavior of ex-
istential modality could be implemented in an equally appealing way.
One would have to stipulate that an update with the information that
<O would involve two pushing operations, too, and leave two copies
of s[¢] on top of the stack. Furthermore, unless we introduce revision
or non-monotonic updates, the state in the middle of the output stack
in (55) is empty, thus it would block the path of downward percolation
of any subsequent update with information of the form Wy. Therefore
the present system seems more suitable for the purpose at hand.

The stack framework is presented here as a way of handling modal
expressions involving quantification over dependent domains. It can be
put to other uses as well. This becomes easier to see when considering its
relation to other formalisms, especially trees. The fact that a sequence

186 / STEFAN KAUFMANN

of stacks can alternatively be viewed as a sequence of “snapshots” of
different stages in the constructions of a tree has been exploited vari-

ously (Grosz and Sidner, 1986):

(6) a a a a a
N
b b b f b f
c d e cd/Ne
Time

In fact, non-accommodationist treatments of modal subordination in
DRT and its derivatives (cf. Frank (1996)) typically build the equivalent
of tree structures, with DRSs labeling nodes and (DRS-)subordination
as the ordering relation between them. However, at any point in a dis-
course, the stack representation introduced here contains no more than
one stack, 1.e., one path in the tree. The tree that would correspond
to an entire discourse is therefore not an essential level of representa-
tion, but epiphenomenal, encoding merely the history of the processing.
This view is motivated by a desire to separate the information content
conveyed in the discourse from more accidental and idiosyncratic prop-
erties of the protocol: The temporary contexts are kept only as long as
needed to contextualize incoming portions of incomplete information
(in this sense, modal subordination is a form of underspecification),
and the final result of the processing does not reveal the way it came
about.

Note that the limitation to one stack at a time introduces a strong
right frontier constraint. Such a generalization has been discussed and
motivated before (Grosz and Sidner, 1986; Webber, 1991), among oth-
ers. In tree formalisms it has to be stated explicitly, while it is a natural
consequence of the present system. This is not to say that reference to
earlier parts of the discourse i1s impossible, but only that the implicit
kind of conditionalization observed in modal subordination is restricted
to local contexts and thus adequately treated here (cf. Note 1 for lo-
cality.)

Furthermore, this formalism provides a more realistic picture of
the incremental nature of discourse processing than representations in
which the result of the processing is available only after some larger
structure is completed. By virtue of the fact that every newly added
piece of information is immediately propagated down the stack, the bot-
tom element is up-to-date after every sentence. In this respect the sys-
tem proposed here differs also from “Zeinstra’s Logic” (Muskens et al.,
1996, 610-612), which otherwise has some similarity to this framework:

DyNaMIic CONTEXT MANAGEMENT / 187

There an update at the top is not complete and has no consequences
further down in the stack until Zeinstra’s right-bracket operator] is ap-
plied. The right bracket corresponds roughly to the Pop-operator [/]
of the present formalism with respect to its effect on the shape of the
stack. In addition, however, it ensures the downward propagation of
updates, a task which here is fulfilled in mid-discourse by the [-]; op-
eration.

Other phenomena for which analyses in terms of trees have been pro-
posed would lend themselves to this more dynamic stack treatment. For
instance, the interpretation of events with respect to temporal inclusion
and precedence has been dealt with by ter Meulen (1995) in terms of
“Dynamic Aspect Trees”. Another application would be quantification
in the domain of individuals, rather than worlds. But the pursuit of
these ideas must be left for another occasion.

References

Frank, A. 1996. Context Dependence in Modal Constructions. PhD thesis,
Institut fir maschinelle Sprachverarbeitung, Stuttgart.

Groenendijk, J., M. Stokhof, and F. Veltman. 1996. Coreference and modal-
ity. In Lappin, S., editor, The Handbook of Contemporary Semantic The-
ory, pages 179-213. Blackwell, Oxford.

Grosz, B. J. and C. L. Sidner. 1986. Attention, intentions, and the structure
of discourse. Computational Linguistics, 12(3):175-204.

Kamp, H. and U. Reyle. 1991. A Calculus for First Order Discourse Repre-
sentation Structures. Arbeitsbericht des Sonderforschungsbereich 340, Nr.
16. Universitat Stuttgart.

Kamp, H. and U. Reyle. 1993. From Discourse to Logic. Kluwer, Dordrecht.

Kaufmann, S. 1998. What’s at stack in discourse. In Dekker, P., M. Stokhof,
and Y. Venema, editors, Proceedings of the 11th Amsterdam Colloquium,
pages 187-192. ILLC.

Kibble, R. 1998. Modal subordination, focus and complement anaphora.
In Ginzburg, J., Z. Khasidashvili, C. Vogel, J.-J. Lévi, and E. Vallduvi,
editors, The Tbilist Symposium on Logic, Language and Computation: Se-
lected Papers, pages 71-84. CSLI.

Krahmer, E. and R. Muskens. 1995. Negation and disjunction in discourse
representation theory. Journal of Semantics, 12:357-376.

Kratzer, A. 1991. Modality / Conditionals. In von Stechow and Wunderlich
(1991), pages 639-656.

188 / STEFAN KAUFMANN

ter Meulen, A. 1995. Representing Time in Natural Language. MIT Press,
Cambridge, MA.

Muskens, R., J. van Benthem, and A. Visser. 1996. Dynamics. Report and
Technical Note Series, LLP-96-04. ILLC, Amsterdam.

Prist, H., R. Scha, and M. van den Berg. 1994. Discourse grammar and verb
phrase anaphora. Linguistics and Philosophy, 17:261-327.

Roberts, C. 1989. Modal subordination and pronominal anaphora in dis-
course. Linguistics and Philosophy, 12:683-721.

Roberts, C. 1995. Domain restriction in dynamic semantics. In Bach, E.
et al., editors, Quantification in Natural Language. Kluwer, Dordrecht.

von Stechow, A. and D. Wunderlich, editors. 1991. Semantik: ein interna-
tionales Handbuch der zeilgenossischen Forschung = Semantics. Walter
de Gruyter.

Vermeulen, K. 1994. Explorations of the Dynamic Environment. PhD thesis,
Utrecht.

Webber, B. L. 1991. Structure and ostension in the interpretation of discourse
deixis. Language and Cognitive Processes, 6:2:107-135.

Zeevat, H. 1992. Presupposition and accommodation in update semantics.
Journal of Semantics, 9(4):379-412.

