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Abstract. Philosophers investigating the interpretation and use of con-
ditional sentences have long been intrigued by the intuitive correspon-
dence between the probability of a conditional ‘if A, then C’ and the
conditional probability of C, given A. Attempts to account for this in-
tuition within a general probabilistic theory of belief, meaning and use
have been plagued by a danger of trivialization, which has proven to be
remarkably recalcitrant and absorbed much of the creative effort in the
area. But there is a strategy for avoiding triviality that has been known
for almost as long as the triviality results themselves. What is lacking is a
straightforward integration of this approach in a larger framework of be-
lief representation and dynamics. This paper discusses some of the issues
involved and proposes an account of belief update by conditionalization.

1 Introduction

Most contemporary theories of the interpretation of conditionals are inspired by
Ramsey’s (1929) paraphrase of the mental process involved in their interpreta-
tion, known as the Ramsey Test (RT):

(RT) If two people are arguing ‘If A will C?’ and are both in doubt as to A,
they are adding A hypothetically to their stock of knowledge and arguing
on that basis about C. . . We can say they are fixing their degrees of belief
in C given A.

For all its intuitive appeal, (RT) is too general and underspecified to be oper-
ationalized in a concrete theoretical approach. To turn it into a definition, one
has to flesh out several abstract ideas it mentions. Most crucially, this concerns
the notions of stock of knowledge, adding A temporarily, and degrees of
belief.
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In this paper I explore one particular way to read (RT), viz. a version of prob-
abilistic semantics inspired by Ramsey and developed by Jeffrey (1964), Adams
(1965, 1975), and many subsequent authors. The basic ingredients are familiar
from propositional logic. Sentences denote propositions, modeled as sets of
possible worlds. Epistemic states (Ramsey’s “stocks of knowledge”) are rep-
resented in terms of (subjective) probabilities. The addition of the antecedent
proceeds by conditionalization.

Regarding the latter point, another question that needs to be addressed is
whether one and the same update operation is appropriate for all conditionals.
Conditionalization on a proposition is typically interpreted as modeling the pro-
cess of learning (hence coming to believe) that the proposition is true. However,
there are well-known examples of conditionals in which the relevant supposition
is intuitively that the antecedent is true without its truth being known to the
speaker. This can be illustrated with examples whose antecedents or consequents
explicitly deny the relevant belief, such as ‘if it’s raining and I don’t know it. . . ’.
Examples of this kind are generally problematic for theories – whether proba-
bilistic or not – which rely on a single operation to represent the hypothetical
reasoning involved. I return to this issue towards the end of the paper, having in-
troduced a formal framework in which the relevant distinction can be accounted
for.

2 Probability models

To get things started, I begin with a fairly simple model-theoretic interpretation.
For now the goal is to stay close to the standard possible-worlds apparatus
of propositional logic, adding only the structure required to model probability
judgments. The setup I introduce in this subsection will ultimately not work, as
we will see below. But it is a good place to start.

I assume that sentences of English are mapped to expressions of the standard
language of propositional logic, and spell out the formal details in terms of the
latter. Let A be a set of atomic propositional letters, and L0

A be the smallest set
containing A and closed under negation and conjunction. I write ‘ϕ’ and ‘ϕψ’ for
the negation of ϕ and the conjunction of ϕ and ψ, respectively. A probability
model is a standard possible-worlds model for L0

A, augmented with a probability
measure.

Definition 1 (Probability model). A probability model for language L0
A

is a tuple 〈Ω,F ,Pr, V 〉, where:1

– Ω is a non-empty set (of possible worlds);
– F is a σ-algebra on Ω;
– Pr is a probability measure on F ;
– V is a function mapping sentences to characteristic functions of elements of
F , subject to the following conditions, for all ϕ,ψ ∈ L0

A and ω ∈ Ω:

V (ϕ)(ω) = 1− V (ϕ)(ω)

V (ϕψ)(ω) = V (ϕ)(ω)× V (ψ)(ω)



To relate the terminology familiar from possible-worlds semantics to the statis-
tical jargon of probability theory, we can equate possible worlds with outcomes
and sets of possible worlds (i.e., propositions) with events. Definition 1 follows
the practice, common in probability theory, of separating the representations of
the space of outcomes and the algebra on which the measure is defined (here
Ω and F , respectively). There are good philosophical reasons for doing this,
but for the purposes of this paper, no harm is done by assuming for simplicity
that F is the powerset of Ω. It then follows without further stipulation that all
propositions denoted by sentences are in the domain of the probability function.

Note that V maps sentences not to sets of worlds, but to their characteristic
functions. Statistically speaking, those sentence denotations are indicator vari-
ables – a special kind of random variables whose range is restricted to the
set {0, 1}. In the present context this perspective was first proposed by Jeffrey
(1991) and further developed by Stalnaker and Jeffrey (1994). The motivation
for modeling the denotations of sentences in this way will become clear below.
It is important in the formal setup, but I will occasionally collapse talk of sets
of worlds and talk of their characteristic functions where concepts rather than
implementation are at stake.

The function Pr assigns probabilities to propositions, not sentences, but based
on it we can assign probabilities to sentences indirectly as the expectations
of their values. Generally speaking (and not just in the case of variables with
range {0, 1}), the expectation of a random variable is the weighted sum of its
values, where the weights are the probabilities that it takes those values.

Definition 2 (Expectation). Let θ : Ω 7→ R be a random variable. The ex-
pectation of θ relative to a probability function Pr is defined as follows:2

E[θ] :=
∑

x∈range(θ)

x× Pr(θ = x)

.

For the purposes of interpreting the language L0
A, the relevant variable for a

given sentence ϕ is its interpretation V (ϕ).

Definition 3 (Probabilities of sentences). Given a probability model for L0
A

(see Definition 1), a function P maps sentences to real numbers as follows:

P(ϕ) := E[V (ϕ)]

1 A σ-algebra on Ω is a non-empty set of subsets of Ω that is closed under complements
and countable unions. A probability measure on F is a countably additive function
from F to the real interval [0, 1] such that Pr(Ω) = 1.

2 I write ‘Pr(θ = x)’ to refer to the probability of the event that θ has value x. This
is an abbreviation of the more cumbersome ‘Pr({ω ∈ Ω|θ(ω) = x})’. I also assume,
here and throughout this paper, that the range of the random variable is finite. This
is guaranteed for L0

A under V in Definition 2, but becomes a non-trivial restriction
in general. Nothing hinges on it, however: Giving it up would would merely require
that the summations in the definitions be replaced with integrals.



Since V (ϕ) is an indicator variable for all ϕ in L0
A, the expectation of V (ϕ) is

just the probability that ϕ is true:

(2) P(ϕ) = 0× Pr(V (ϕ) = 0) + 1× Pr(V (ϕ) = 1)
= Pr(V (ϕ) = 1)

Thus in this framework we can state the connection between the probabilities of
sentences on the one hand and the probabilities of propositions on the other, in
the disquotational slogan in (3), the probabilistic analog of the famous Tarskian
truth definition.

(3) P(“snow is white”) = Pr(snow is white)

Despite the equality, however, it is important to keep in mind the formal dis-
tinction between Pr, a probability measure on an algebra of propositions, and
P, an assignment of probabilities to sentences. Only the former is technically a
measure on its domain, whereas the latter maps sentences to probabilities only
indirectly. We will see below that this separation of a sentence’s denotation from
its probability is useful in extending the interpretation to conditionals.

3 Conditionals and conditional probability

While Ramsey’s formulation in (RT) is open to a variety of interpretations, the
reading that is at issue here – one which many philosophers have found eminently
plausible – is that the “degree of C given A” that speakers report and aim to
adjust when using indicative conditionals, is just the conditional probability of
C given A. This idea has wide appeal among philosophers, going back to Jeffrey
(1964), Adams (1965, 1975), and Stalnaker (1970), among others.

3.1 Conditional Expectation

In the present framework, where the probabilities of sentences are defined as the
expectations of their truth values, the corresponding idea is that the probabilities
of conditionals are the conditional expectations of their consequents, given
that their antecedents are true. The conditional expectation of a random variable
is its expectation relative to the conditionalized probability distribution:

Definition 4 (Conditional expectation). Let θ, ξ be random variables and
y ∈ range(ξ). The conditional expectation of θ, given ξ = y, is defined as

E[θ|ξ = y] =
∑

x∈range(θ)

x× Pr(θ = x|ξ = y)

This suggests that we could supplement the function P, which maps sentences
in L0

A to expectations, with a two-place function mapping pairs of sentences to
conditional expectations:



Definition 5 (Conditional probabilities of sentences). Given a model for
L0
A (see Definition 1), a two-place function P(·|·) maps pairs of sentences to

conditional expectations:

P(ϕ|ψ) = E[V (ϕ)|V (ψ) = 1]

It is then easy to show, along the lines of (2) above, that P(ϕ|ψ) is defined just
in case the conditional probability Pr(V (ϕ) = 1|V (ψ) = 1) is, and that, where
defined, the two coincide. In this sense, we could say that P(·|·) satisfies the
probabilistic reading of (RT).

It is also quite clear, however, that this approach falls far short of giving us
what we want. For what we ultimately want is an assignment of probabilities to
conditional sentences, rather than the pairs of sentences that constitute them. I
take it to be self-evident that we should favor an approach which treats condi-
tionals on a par with the atomic sentences and Boolean compounds that make
up the rest of the language. But if there is any need for a further argument
for this claim, suffice it to point out that conditionals can be embedded and
compounded with each other and with other sentences. The following are all
well-formed and interpretable sentences of ordinary English:

(4) a. If this match is wet, it won’t light if you strike it.
b. If this switch will fail if it is submerged in water, it will be discarded.
c. If this vase will crack if it is dropped on wood, it will shatter if it is

dropped on marble.

Compounds like those in (4) have sometimes been claimed to bear only a su-
perficial resemblance to compounded conditionals. Semantically, the story goes,
their constituents are subjected to some kind of re-interpretation as sentences
in L0

A, so that what looks like complex conditionals in are in fact simple ones
(Adams, 1975; Gibbard, 1981, among others). But we should be wary of this
kind of story, which opens up a suspiciously handy escape hatch in the face
of technical problems posed by these sentences for one’s favorite theory. There
certainly is no linguistic evidence that these sentences are anything other then
compound conditionals. A theory which assigns probabilities to these sentences
in a systematic fashion may still be found wanting on empirical grounds; but at
least it would lend itself to empirical verification in the first place.

What, then, would it take to extend P to conditionals? So far they are not
even represented in the language. L0

A, being closed under the usual Boolean oper-
ations only, comes with the means to express the material conditional (definable
as ψϕ); but this is not the intended interpretation of the natural-language condi-
tional ‘if ψ then ϕ’, nor is its probability equivalent to the conditional probability
of ϕ given ψ.3

3 This is not the place to rehearse the arguments for and against the material condi-
tional as an adequate rendering of our intuitions about the meaning of the ‘if-then’
construction. The material analysis has its adherents in philosophy (Jackson, 1979;
Lewis, 1986, among many others) and linguistics (see Abbott, 2004, for recent ar-



So let us first augment the language with a two-place propositional connective
‘→’ as a stand-in for the English ‘if-then’ construction. Let LA be the smallest set
containing L0

A and closed under →. We can now state precisely what (RT) and
Definition 5 imply in this framework: The probability assigned to ψ → φ should
be equal to the conditional probability assigned to its constituents, as shown
in (5a). By the definition of P, this means that the unconditional expectation
of the conditional should equal the conditional expectation of the consequent,
given that antecedent is true (5b):

(5) a. P (ψ → ϕ) = P (ϕ|ψ)
b. E[V (ψ → ϕ) = E[V (ϕ)|V (ψ) = 1]

To be quite clear, (5) is not a definition. Rather, it states a desideratum that one
would like to achieve when extending the domain of V and P from L0

A to LA.
Interestingly, this extension is not at all straightforward. I turn to this issue
next.

3.2 Triviality

The unification of (RT) on its probabilistic reading and a truth-conditional inter-
pretation of conditionals has been a challenge ever since Lewis (1976) presented
the first of his famous triviality results, which have since been deepened and
extended in a steady stream of subsequent work. Here I only summarize the first
and simplest of the results. It should be kept in mind, however, that many at-
tempts to circumvent them within the general truth-conditional framework have
been tried and shown to fail.

Suppose, then, that the probabilistic (RT) holds and conditionals denote
propositions in the usual sense – i.e., sets of worlds, or in the present framework,
characteristic functions thereof. Then, since the denotations of conditionals are
propositions, one can ask how their probabilities should be affected by condition-
alization on other propositions: Technically, since V (ψ → ϕ) denotes a random
variable, we should be able to derive its conditional expectation given that some
arbitrary sentence is true.

Lewis (1976) was interested in the case that the conditioning sentence is ϕ,
the consequent of the conditional, or its negation. For those cases, Lewis made a
pair of assumptions which seem rather plausible: First, given ϕ, the probability
of the conditional ψ → ϕ should be 1; and second, given ϕ, it should be 0. Thus
the equalities in (6) should hold.4

guments); but it is fair to say that, especially in the philosophical tradition, such
proposals tend to be driven by frustration with technical obstacles (more on this in
the next subsection), rather than pre-theoretical judgments. Empirically, the prob-
abilistic interpretation of (RT) has strong and growing support (Evans and Over,
2004; Oaksford and Chater, 1994, 2003, 2007).

4 Lewis argued for the plausibility of (6) by invoking the Import-Export Principle,
which in its probabilistic version requires that P (ψ → ϕ|χ) be equivalent to P (ϕ|ψχ).
I avoid this move here because this principle is not universally accepted (see, for
instance, Adams, 1975; Kaufmann, 2009).



(6) a. P (ψ → ϕ|ϕ) = 1
b. P (ψ → ϕ|ϕ) = 0

In the present framework, this amounts to the equalities in (7).

(7) a. E[V (ψ → ϕ)|V (ϕ) = 1] = 1
b. E[V (ψ → ϕ)|V (ϕ) = 0] = 0

Now, since we are assuming that all sentences denote variables with range {0, 1},
this should hold for conditionals as well. But then (7) implies that with prob-
ability 1, the conditional is equivalent to its consequent! This consequence is
grossly counterintuitive. As Lewis already pointed out, it implies that the con-
ditional consequent is probabilistically independent of the antecedent, when in
fact conditionals are typically used to convey that they are not.

The literature on triviality that ensued after the publication of Lewis’s semi-
nal argument is vast and varied, and this is not the place to do justice to its depth
and breadth. See Hájek and Hall (1994); Hájek (1994, 2012); Edgington (1995);
Bennett (2003) and references therein for overviews, and Kaufmann (2005) for
more discussion in the present framework. In the next section, I turn away from
this literature of mostly negative results to an approach which evades triviality.

4 Stalnaker Bernoulli models

The challenge posed by the triviality results has proven to be formidable; but it
is so only under certain assumptions which Lewis and many subsequent authors
either took for granted or found too valuable to give up. Specifically, the assump-
tions are that (i) the denotations of conditionals are propositions in the usual
sense – here, sets of possible worlds (more precisely, their characteristic func-
tions); and (ii) the values of conditionals at individual worlds are fixed and do
not depend on the probability distribution. Giving up these assumptions opens
up an elegant way around the triviality results. This was first pointed out by van
Fraassen (1976). Jeffrey (1991) arrived at a similar approach (in spirit, if not in
detail) from a different angle. The connection was made explicit by Stalnaker
and Jeffrey (1994), which in turn inspired subsequent work including Kaufmann
(2005, 2009).

4.1 Basic idea

The main innovation is a move from possible worlds to sequences of possible
worlds as the entities at which sentences receive their truth values and which
constitute the points in the probabilistic sample space. The idea was given a
compelling intuitive motivation by Stalnaker and Jeffrey (1994), with reference
to Stalnaker’s (1968) similarity-based interpretation of conditionals.

Stalnaker’s proposal was that the truth value of ‘if A, then C’ at a possible
world w is the truth value of its consequent C at a world “at which A is true and
which otherwise differs minimally from the actual world.” What exactly such a



theory predicts then depends on the notion of minimal difference. For instance,
Stalnaker maintained that each world is maximally similar to itself; thus if A is
true at w, then no alternative world enters the evaluation because w is the most
similar A-world to itself. Another assumption favored by Stalnaker was that for
any world w and proposition X (including the contradiction), there is a unique
X-world that is most similar to w. This assumption allowed Stalnaker to ensure
that the conditional had certain logical properties which he considered desirable,
especially Conditional Excluded Middle, i.e., that for any pair A,C and world
w, one of ‘if A, then C’ and ‘if A, then not-C’ is true at w.

Now, the assumption that there is a unique most similar world for each propo-
sition has always been controversial.5 If we give it up, allowing for multiple max-
imally similar worlds, but still insist on evaluating the conditional consequent
relative to a single antecedent-world, then the choice of world becomes essen-
tially non-deterministic. Van Fraassen (1976) proposed a simple formal model
of such a process: If we are at an antecedent-world, we are done choosing and
evaluate the conditional by evaluating its consequent. Otherwise, we continue
to choose worlds in a sequence of random trials (with replacement), where at
each trial the probabilities that particular worlds will be chosen are determined
by the original probability distribution. Thus the probabilities at each trial are
independent and identically distributed. Hence van Fraassen’s term “Stalnaker
Bernoulli model,” suggestive of the special utility of this kind of model in linking
the intuitions behind Stalnaker’s possible-worlds semantics for conditionals to a
standard probability-theoretic framework.

4.2 Implementation

Following van Fraassen (1976) I start with a probability model and define a
product space consisting of sets of denumerable sequences of possible worlds,
along with a probability measure that is derived from the original one. As before,
sentences of the language are mapped to (characteristic functions of) sets in the
probability space; now these are sets of world sequences, rather than sets of
worlds. The interpretation function is derived in the following way: Sentences
in L0

A are evaluated at world sequences in terms of the first world. Conditionals
ψ → ϕ are evaluated at a sequence by eliminating the (possibly empty) initial
sub-sequence of worlds at which the antecedent is false, then evaluating the
consequent at the remaining “tail” of the sequence. At sequences at which the
antecedent is false throughout, the value is undefined. The details are given in
the following definition.6 The details are given in the following definition.

5 See Lewis (1973); Stalnaker (1981) for some relevant arguments.
6 In van Fraassen’s original version, a conditional is true, rather than undefined, at a

sequence not containing any tails at which the antecedent is true. The difference is
of no consequence for the cases I discuss here. In general, I find the undefinedness
of the conditional probability in such cases intuitively plausible and preferable, as
it squares well with widely shared intuition (in the linguistic literature, at least)
that indicative conditionals with impossible antecedents give rise to presupposition



Definition 6 (Stalnaker Bernoulli model for LA). Let 〈Ω,F ,Pr, V 〉 be a
probability model for L0

A. The corresponding Stalnaker Bernoulli model for LA
is the tuple 〈Ω∗,F∗,Pr∗, V ∗〉 such that:

– Ω∗ is the set of denumerable sequences of worlds in Ω.
For ω∗ in Ω∗, I use the following notation:

• ω∗[n] is the n-th world in ω∗ (thus ω∗[n] ∈ Ω)
• ωn∗ is the tail of ω∗ starting at ω∗[n] (thus ωn∗ ∈ Ω∗)

– F∗ is the set of all products X1 × . . .×Xn ×Ω∗, for n ≥ 1 and Xi ∈ F .
– Pr∗ (·) is a probability measure on F∗ defined as follows, for Xi ∈ F :

Pr∗ (X1 × . . . Xn ×Ω∗) = Pr(X1)× . . .× Pr(Xn)

– V ∗ maps pairs of sentences in LA and sequences in Ω∗ to values in {0, 1}
as follows, for ϕ,ψ ∈ LA:

if ϕ ∈ L0
A, then V ∗(ϕ)(ω∗) =V (ϕ)(ω∗[1])

V ∗(ϕ)(ω∗) =1− V ∗(ϕ)(ω∗)

V ∗(ϕψ)(ω∗) =V ∗(ϕ)(ω∗)× V ∗(ψ)(ω∗)

V ∗(ϕ→ ψ)(ω∗) =V ∗(ψ)(ωn∗)

for the least n s.t. V ∗(ϕ)(ωn∗) = 1

I use boldfaced letters like ‘X, Y’ to refer to elements in F∗. Notice that even if
F is the powerset of Ω, F∗ is a not the powerset of Ω∗, but a proper subset of
the latter. For instance, consider two arbitrary worlds ω1, ω2 and two arbitrary
sequences ω∗a = 〈ω1, ω2, . . .〉 and ω∗b = 〈ω2, ω1, . . .〉. The set {ω∗a, ω∗b} is in the
powerset of Ω∗ but not in F∗, although it is a subset of sets in F∗. This is not
a deficiency for the purposes that I am putting this model to, since the truth
conditions do not allow for the case that, say, a sentence is true at all and only
the sequences in {ω∗a, ω∗b}.

As before, the probabilities assigned to sentences are the expectations of
their truth values. Recall that sentences containing conditionals differ from sen-
tences in L0

A in that their values are not guaranteed to be defined: If a given
sequence does not contain any A-worlds, then the value of any conditional with
antecedent A at that sequence is undefined, and so is the value of compounds
containing the conditional in question. The assignment of probabilities to sen-
tences therefore comes with a qualification:

Definition 7 (Probabilities of sentences). Given a Stalnaker Bernoulli model
for LA (see Definition 6), a function P∗ maps sentences to real numbers as fol-
lows:

P∗(ϕ) = E∗[V ∗(ϕ)|V ∗(ϕ) ∈ {0, 1}]

failure. Moreover, it follows from the results below that the (un)definedness is fairly
well-behaved, in the sense that the value of the conditional is defined with probability
zero or one, according as the probability of the antecedent is non-zero or zero.



The conditioning event on the right-hand side in this definition is that the value
of the sentence in question is defined. It turns out that this is not a very con-
straining condition, as the following outline of an argument shows (see also van
Fraassen, 1976; Kaufmann, 2009).

First, from the definition of V ∗ it follows immediately that the values of sen-
tences in L0

A – i.e., sentences not containing any occurrences of the conditional
connective – are defined at all sequences. Consider next a “first-order” condi-
tional – that is, a sentence of the form ϕ → ψ, where both ϕ and ψ are in L0

A.
There is only one reason why the value of this sentence at a sequence ω∗ could
be undefined, namely that its antecedent ϕ is false throughout ω∗ (i.e., at ω∗[n]
for all n). Proposition 1 establishes that whenever the antecedent has positive
probability, the set of sequences with this property has probability 0. (Proofs of
this and all subsequent results are given in the Appendix.)

Proposition 1 (van Fraassen, 1976). For X ∈ F , if Pr(X) > 0, then

Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

))
= 1.

As an immediate consequence, the value of the conditional is almost surely
defined when its antecedent has positive probability. By similar reasoning, the
value of the conditional is almost surely undefined if the antecedent has zero
probability.7

As it stands, Proposition 1 only applies to elements of F , i.e., denotations of
sentences in L0

A. It can be generalized to other sets, in particular the denotations
of conditionals, but I will not pursue this argument here because the points I
aim to make in this paper can be made with reference to simple sentences.
Henceforth, to forestall any complexities of exposition arising from the possibility
of undefinedness, I will implicitly limit the discussion to sentences, all of whose
constituents have positive probability. With this assumption, their values are
guaranteed to be defined almost surely, thus the conditioning event on the right-
hand side of the equation in Definition 7 can be ignored.

Van Fraassen (1976) proved the following “Fraction Lemma,” which turns
out to be useful in calculating the probabilities of both simple and compounded
conditionals.

Lemma 1 (van Fraassen, 1976). If Pr(X) > 0, then
∑
n∈N Pr

(
X
)n

=
1/Pr(X).

As a straightforward consequence of the foregoing results, it is easy to ascertain
that the probabilities of first-order conditionals are the corresponding conditional
probabilities.

Theorem 1 (van Fraassen, 1976). For A,C ∈ L0
A, if P(A) > 0, then

P∗ (A→ C) = P(C|A).

7 In probability theory, an event happens “almost surely” if its probability is 1. This
notion should not be confused with logical necessity.



In addition, it is easy to see that for all ϕ ∈ L0
A, P∗(ϕ) = P(ϕ). Specifically, this

is true for AC and A. Thus as an immediate corollary of Theorem 1, we have
that

(8) P∗(A→ C) = P∗(C|A)

This is why the interpretation in a Stalnaker Bernoulli model is not subject to
the Lewis-style triviality results: The denotation of the conditional is both a
proposition (specifically, the characteristic function of a set of sequences) and
the corresponding conditional expectation.

Theorem 1 illustrates the simplest case of a correspondence between the
probabilities assigned to conditional sentences in a Stalnaker Bernoulli model
and the probabilities that their L0

A-constituents receive in the original probability
model. Similar calculations, albeit of increasing complexity, can be carried out
for sentences of arbitrary complexity. This was hinted at by Stalnaker and Jeffrey
(1994) and worked out for cases of conditional antecedents and consequents by
Kaufmann (2009). The formulas in (9a) through (9d) serve as illustration; for
more details and proofs, the reader is invited to consult Kaufmann (2009).

(9) For all A,B,C,D in L0
A:

a. If P(A) > 0 and P(C) > 0, then
P∗((A→ B) ∧ (C → D))

=
P(ABCD) + P(D|C) + P(ABC) + P(B|A)P(CDA)

P(A ∨ C)
b. If P(A) > 0,P(C) > 0, and P(B|A) > 0, then

P∗((A→ B)→ (C → D))

=
P(ABCD) + P(D|C)P(ABC) + P(B|A)P(ACD)

P(A ∨ C)P(B|A)
c. If P(B) > 0 and P(C) > 0, then

P∗(B → (C → D)) = P(CD|B) + P(D|C)P(C|B)
d. If P(A) > 0 and P(B|A) > 0, then

P∗((A→ B)→ D) = P(D|AB)P(A) + P(DA)

More complex compounds also receive probabilities under this approach, but
they are beyond the scope of this paper because it is not clear what the empirical
situation is in those cases.

4.3 Back to probability models

The preceding subsection showed how to start from an ordinary probability
model and obtain values and probabilities for sentences in the derived Stalnaker
Bernoulli model, defined by V ∗ and Pr∗. Now Stalnaker and Jeffrey (1994) (and,
following them, Kaufmann, 2009) did not stop there, for their ultimate goal was
to interpret sentences in L0

A in the original probability model – i.e., to
extend the value assignment function V from L0

A to LA.
Intuitively, the idea is to let V (ϕ)(ω) be the conditional expectation of V ∗(ϕ),

given the set of sequences in Ω∗ whose first world is ω∗ – that is, the set



{ω∗ ∈ Ω∗|ω∗[1] = ω}. But this set may well have zero probability, since its prob-
ability is defined as Pr({ω}). Stalnaker and Jeffrey’s workaround is to define the
expectation relative to the ω∗-subspace of Ω∗, obtained by effectively “ignoring”
the first position of the sequences.

Definition 8. Given a probability model M = 〈Ω,F ,Pr, V 〉 for L0
A, the inter-

pretation function is extended to LA as follows: For all ϕ ∈ LA and ω ∈ Ω,

V (ϕ)(ω) = Pr∗
({
ω1∗∣∣ω∗[0] = ω and V ∗(ϕ)(ω∗) = 1

})
where E∗,V ∗ are defined relative to the Stalnaker Bernoulli model based on M.

It is then possible to calculate, for sentences in LA, the values they receive under
V . The simple case of first-order conditionals is given in (10).

(10) V (A→ C)(ω) =


1 if V (A)(ω) = V (C)(ω) = 1

0 if V (A)(ω) = 1, V (C)(ω) = 0

P(C|A) if V (A) = 0

The first two cases on the right-hand-side of (10) are straightforward: The value
of V ∗(A→ C) is true at either all or none of the sequences starting with an A-
world, depending on the value of C at the first world. The third case is obtained
by observing that the set of sequences starting with a A-world at which the
conditional is true is the union of all sets of sequences consisting of n A-worlds
followed by an AC-world, for n ∈ N. By an argument along the same lines as the
proof of Lemma 1 above, the measure of this set under Pr∗ is just the conditional
probability of C, given A:

(11)
∑
n∈N

(
P(A)n × P(AC)

)
= P(AC)/P (A) by Lemma 1

Finally, we can show that the expectation of the values in (10) is the conditional
probability of the consequent, given the antecedent, as desired:

(12) P(A→ C) = E[V (A→ C)]
= 1× P(AC) + 0× Pr(AC) + P(C|A)× Pr(A)
= P(C|A)[P(A) + P(A)] = P(C|A)

More complex compounds involving conditionals have more complicated defini-
tions of their value assignment. Kaufmann (2009) gives the details for the cases
discussed in (9a) through (9d) above. The reader is referred to the paper for
details.

4.4 Interim summary

The foregoing outlines a strategy for calculating values and probabilities for
sentences in LA relative to a probability model M, pictured schematically in
Figure 1. The extension from L0

A to LA crucially requires the construction of



Probability model 〈Ω,F ,Pr, V 〉
V (A)(ω) ∈ {0, 1}

V (A→ C)(ω) ∈ [0, 1]

E∗[V ∗(A→ C)|{ω1∗|ω∗[1] = ω}]

V ∗(A→ C)(ω∗) ∈ {0, 1}
SB model 〈Ω∗,F∗,Pr∗, V ∗〉

Fig. 1. Value assignment for conditionals via the derived SB model

the Stalnaker Bernoulli model M∗, which is then used in the interpretation of
sentences involving conditionals.

Now, it is clear that this clever strategy is also somewhat roundabout. All
sentences receive values and probabilities in both models; moreover, due to the
way one is defined in terms of the other, the probabilities actually coincide:
P(ϕ) ≡ P∗(ϕ) for all ϕ. This naturally raises the question why both models are
required.

Little reflection is needed to see that once we raise this issue, it comes down
to the question whether we still need the simpler probability model. For it is
clear that the Stalnaker Bernoulli model is indispensable: It is crucially involved
in the derivation of values and probabilities for conditionals and more complex
sentences containing conditional constituents.8 But then, what is the utility of
having the traditional, world-based model?

I will not venture to offer a conclusive answer to this question at this point;
surely one factor in favor of the conventional possible-worlds model is its famil-
iarity and relatively straightforward and well-understood interface with general
topics in epistemology and metaphysics. So the question is to what extent these
connections could be recreated in a framework that was primarily based on the
Stalnaker Bernoulli approach.

Aside from such big-picture considerations, it is worth stressing that a gen-
eral shift to the Stalnaker Bernoulli framework would bring additional function-
ality beyond the extension of the interpretation to LA. To wit, adopting the
approach of assigning intermediate values to conditionals at worlds at which
their antecedents are false, we face the problem that it there is no general rule
of conditionalization involving conditionals – either for conditioning their deno-
tations on other events, or for conditioning other events on them. This problem

8 As a historical side note, it is worth pointing out that some of the functionality deliv-
ered here by the Stalnaker Bernoulli model can also be achieved in a simpler model.
This was shown by Jeffrey (1991), who developed the random-variable approach with
intermediate truth values without relying on van Fraassen’s construction. But that
approach has its limits, for instance when it comes to conditionals with conditional
antecedents, and can be seen as superseded by the Stalnaker Bernoulli approach.



does not arise in the Stalnaker Bernoulli approach, where the probability of a
conditional is the probability of a proposition (in addition to being a conditional
probability).

To get such a project off the ground, however, much work has to be done.
For one thing, the Stalnaker Bernoulli model would need some intuitive inter-
pretation. Moreover, we would need plausible representations of such elementary
notions as belief change by conditionalization.

Regarding the first of these desiderata – an intuitive interpretation of Stal-
naker Bernoulli models – we can derive some inspiration from the suggestions
of Stalnaker and Jeffrey, cited above. A set X of world sequences represents two
kinds of information: “factual” beliefs are encoded in the set of “first worlds”
{ω∗[1]|ω∗ ∈ X}, which is where all sentences in L0

A receive their truth values.
The other kind of information consists in “conditional” beliefs, encoded in the se-
quences

{
ω2∗
∣∣ω∗ ∈ X

}
. Each sequence represents a possible outcome of a count-

able sequence of random choices of a world (with replacement), modeling a non-
deterministic variant of the interpretation of conditionals in terms of a Stalnaker
selection function.9

With this in mind, I will set the first issue aside and spend the rest of this
paper focusing on the second issue, the definition of belief update by condition-
alization in a Stalnaker Bernoulli model.

5 Conditionalization

What is the problem with conditionalization in Stalnaker Bernoulli models? Fig-
ure 2 gives a general overview. Suppose we start out, as we did in this paper,
with M1, a conventional probabilistic possible-worlds model. In it, the non-
conditional sentences in L0

A receive truth values at worlds, but in order to extend
the value assignment to conditionals in accordance with the probabilistic inter-
pretation of (RT), we take a detour via the derived Stalnaker Bernoulli model
M∗1 (as as shown in Figure 1 above). This allows us to extend V1 to conditionals.

Now, suppose we want to update the belief model by conditioning on a new
piece of information, say, that some sentence ϕ is true. If ϕ ∈ L0

A, this is not a
problem: As usual in Bayesian update, we conditionalize by shifting the proba-
bility mass to the set of worlds at which ϕ is true, then renormalize the measure
so as to ensure that we have once again a probability distribution, thus obtain-
ing Pr2.

Now, a number of things are noteworthy about this update operation. First,
along with the shift from Pr1 to Pr2, the value assignment for conditionals must
also change in order to ensure that the expectation of the new measure is the
conditional probability. Thus we obtain a valuation function V2 which agrees with
V1 on all sentences in L0

A, but may differ in the values it assigns to conditionals
and sentences containing them. The second noteworthy point about the update

9 In a related sense, one may also think of a given set of sequences as representing all
paths following an introspective (i.e., transitive and euclidean) doxastic accessibility
relation. I leave the further exploration of this connection for future work.



M1 = 〈Ω,F ,Pr1, V1〉
V1(ϕ)(ω) ∈ {0, 1}, ϕ ∈ L0

A

V1(ϕ)(ω) ∈ [0, 1] in general

M2 = 〈Ω,F ,Pr2, V2〉
V2(ϕ) ≡ V1(ϕ), ϕ ∈ L0

A

V2(ϕ) 6≡ V1(ϕ) in general

M∗
1 = 〈Ω∗,F∗,Pr∗1, V

∗〉
V ∗(ϕ)(ω∗) ∈ {0, 1}

M∗
2 = 〈Ω∗,F∗,Pr∗2, V

∗〉
V ∗(ϕ)(ω∗) ∈ {0, 1}

conditioning on ϕ ∈ L0
A

conditioning in general:
not defined

???

Fig. 2. Belief update in probability models with SB interpretations for conditionals

is that we have no systematic way of deriving this new assignment function V2
from V1. After the update, the new values for conditionals have to be filled in by
once again taking the detour via the derived Stalnaker Bernoulli model, nowM∗2.
Thirdly, while the update with a sentence in L0

A just discussed merely presents
a minor inconvenience (in calling for a recalculation of the values of sentences
not in L0

A via the derived Stalnaker Bernoulli model), matters are worse if the
incoming information is conditional, i.e., the information that some sentence not
in L0

A is true. Whenever such a sentence takes values in between 0 and 1, we do
not have a way to conditionalize on it.

Notice, though, that these problems would not arise if we were using Stal-
naker Bernoulli models throughout. InM∗1 andM∗2, all sentences receive values
in {0, 1} almost surely (with the above caveats about the possibility of unde-
finedness and its intuitive justification). Moreover, notice that the two Stalnaker
Bernoulli models share the same valuation function. For recall that V ∗(ϕ)(ω∗)
only depends on the structure of ω∗, not on the probability distribution. And
since conditionals denote propositions in these models (i.e., elements of F∗), con-
ditionalization involving those denotations can proceed in the familiar fashion.
I take all of these facts to be compelling arguments in favor of the exclusive use
of Stalnaker Bernoulli models.

5.1 Shallow conditioning

How exactly should belief update be carried out in Stalnaker Bernoulli models?
To see why this is an issue, consider what would seem to be the most straight-
forward way to define conditionalization on a sentence ϕ in M∗1. Presumably,
similarly to the analogous procedure onM1, this would involve shifting the prob-
ability mass onto sequences at which V ∗(ϕ) evaluates to 1, then renormalizing
the measure to ensure that the result is again a probability distribution.10

10 An alternative way of achieving the same result would be to model belief update
in terms of “truncation” of world sequences along the lines of the interpretation of
conditionals, chopping off initial sub-sequences until the remaining tail verifies ϕ. I
will not go into the details of this operation here; it corresponds to the operation
of shallow conditioning discussed in this subsection, for the same reason that the
probabilities of conditionals equal the corresponding conditional probabilities.



Now, the problem with this approach is that the resulting probability distri-
bution is not Pr∗2, hence the resulting model is not M∗2. It is easy to see why
this is the case. For concreteness, let us assume that the new information is
that some sentence A in L0

A is true. By the definition of the Stalnaker Bernoulli
model, V ∗(A)(ω∗) = 1 whenever V (A)(ω∗[1]) = 1 – in words, if the first world
in ω∗ is an A-world. This includes all sequences which begin with an A-world,
regardless of what happens later on in them.

But this is not the set of sequences over which the probability is distributed
in M∗2. For recall that M∗2 was obtained from M1 by conditionalization on
the information that A is true. As a result of this operation, in M2 the entire
probability mass is assigned to worlds at which A is true. Hence, in M∗2, the
probability mass is concentrated on sequences which consist entirely of A-worlds
(i.e., sequences ω∗ such that V ∗(A)(ωn∗) = 1 for all n).

Thus in order to fill in the missing step from M∗1 to M∗2 in Figure 2, we
would have to conditionalize on the set of sequences in (13b), rather than (13a).

(13) a. {ω∗ ∈ Ω∗|V ∗(ϕ)(ω∗) = 1}
b. {ω∗ ∈ Ω∗|V ∗(ϕ)(ωn∗) = 1 for all n ≥ 1}

However, the set in (13b) has zero probability whenever the probability of ϕ is
less than 1. Indeed, for any X ∈ F , the set X∗ of sequences consisting entirely
of X-worlds has probability 1 or 0, according as the probability of X is 1 or less
than 1:

(14) Pr∗(X∗) = limn→∞ Pr(X)n =

{
1 if Pr(X) = 1

0 otherwise

Clearly a different definition is needed to work around this problem.

5.2 Deep conditioning

It is not uncommon in discussions of probability to see “Bayes’s Rule” as a
definition of conditional probability:

(BR) Pr(X|Y ) =
Pr(X ∩ Y )

Pr(Y )
when Pr(Y ) > 0

Taken as a definition, this suggests that the conditional probability is generally
undefined when the probability of the conditioning event is 0. But this view has
many problematic consequences, not the least of them being that it predicts that
the conditional probability is undefined in cases in which we in fact have clear
intuitions that it exists and what it should be.11 This point has been discussed

11 As a simple example, consider the task of choosing a point (x, y) at random from a
plane. Fix some point (x∗, y∗) and consider the conditional probability that y > y∗,
given x = x∗ (intuitively, the conditional probability that the randomly chosen point
will lie above (x∗, y∗), given that it lies on the vertical line through (x∗, y∗)). We
have clear intuitions as to what this conditional probability is and how it depends



in the philosophical literature (see for instance Stalnaker and Jeffrey, 1994; Jef-
frey, 2004; Hájek, 2003, 2011, and references therein), but the misconception
that (BR) is the definition of conditional probability is apparently hard to root
out.12

My own take on conditional probability follows the lead of Stalnaker and
Jeffrey (1994) and Jeffrey (2004): (BR) is not a definition, but a restatement of
the “Product Rule” (PR):

(PR) Pr(X|Y )× Pr(Y ) = P(X ∩ Y )

Most crucially, (PR) should not be mistaken for a definition either, but as an
axiom regulating the relationship between unconditional and conditional prob-
abilities when both are defined.

Following this general strategy, in Definition 9 I give one definition of a two-
place function Pr∗ (·|·), then I proceed to show that it is in fact properly called
a conditional probability.

Definition 9 (Stalnaker Bernoulli model with conditional probabil-
ity). An Stalnaker Bernoulli model with conditional probability is a tu-
ple 〈Ω∗,F∗,Pr∗ (·) ,Pr∗ (·|·) , V ∗〉, where 〈Ω∗,F∗,Pr∗ (·) , V ∗〉 is a Stalnaker
Bernoulli model (see Definition 6) and Pr∗ (·|·) is a partial function mapping
pairs of propositions in F∗ to real numbers as follows, for all X, Y in F∗:

Pr∗ (X|Y) = lim
n→∞

Pr∗ (X1 ∩ Y1 × . . .×Xn ∩ Yn ×Ω∗)
Pr∗ (Y1 × . . .× Yn ×Ω∗)

This definition opens up the possibility that Pr∗ (X|Y) is defined while the ratio
Pr∗ (X ∩Y) /Pr∗ (Y) is not. For example, let X = Y = Z∗ for some Z ∈ F with
0 < Pr(Z) < 1, and note that in this case Pr∗ (Z∗) = limn→∞ Pr(Z)n = 0. Thus
for instance, the quotient Pr∗(Z∗)/Pr∗(Z∗) is undefined, hence Bayes’s Rule is
silent on the conditional probability of Z∗ given Z∗. However, under Definition 9
the value of Pr∗ (Z∗|Z∗) is defined (proofs are given in the appendix):

Proposition 2. If Pr(Z) > 0, then Pr∗ (Z∗|Z∗) = 1.

Now, while Pr∗ (·|·) may be defined when the quotient in (BR) is not, the next
two results show that it is “well-behaved” with respect to the Product rule (PR).

Proposition 3. If Pr∗ (X|Y) is defined, then Pr∗ (X|Y) × Pr∗ (Y) =
Pr∗ (X ∩Y).

on the location of the cutoff point; but the probability that the randomly chosen
point lies on the line is 0.

12 Notice, incidentally, that the view on conditional probability just endorsed is not at
odds with the remarks on the undefinedness of the values of conditionals at world
sequences throughout which the antecedent is false (see Footnote 6 above). For
one thing, technically the undefinedness discussed there does not enter the picture
because some conditional probability is undefined. But that aside, I emphasize that
I do not mean to claim that conditional probabilities given zero-probability events
are always defined, but only that they can be.



As mentioned above, Stalnaker and Jeffrey (1994) likewise prefer to impose the
product rule as an axiom, rather than using it as a definition. They also impose an
additional condition which in the present framework falls out from the definition
of conditional probability whenever it is defined:

Proposition 4. If Pr∗ (X|Y) is defined and Y ⊆ X, then Pr∗ (X|Y) = 1.

I conclude that Pr∗ (·|·) can properly be called a “conditional probability.”13 At
the same time, there are cases in which (BR) cannot be applied, yet Pr∗ (·|·)
is defined. This possibility is important in modeling belief update in Stalnaker
Bernoulli models.

The remaining results in this section show that conditionalization according
to Definition 9 is well-behaved. The first generalizes Proposition 1 above to
probabilities conditionalized on a sequence Z∗.

Proposition 5. If Pr(X ∩ Z) > 0, then Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

)∣∣∣Z∗) = 1.

Notice tha Proposition 1 is a corollary of Proposition 5, substituting Ω for Z.
Lemma 1 (van Fraassen’s “Fraction Lemma”) can likewise be generalized to
conditional probabilities.

Lemma 2 (Conditional Fraction Lemma). If Pr(X ∩ Z) > 0, then∑
n∈N Pr

(
X|Z

)n
= 1/Pr(X|Z).

Lemma 2 allows us to determine the conditional probability assigned to the
denotation of a conditional given a sequence Z∗.

6 Some consequences for conditionals

To sum up the preceding subsections, the Stalnaker Bernoulli framework of-
fers two natural ways to interpret conditionals: by the rule in Definition 6, and
by deep conditioning. The two are distinguished by the characterization of the
conditioning event, i.e., the way in which the incoming information is used in sin-
gling out the set of sequences on which to concentrate the probability mass. For a
given sentence ϕ, the two options are repeated in (17). I argued above that deep
conditioning is what is required to model belief update by conditionalization.

(17) a. {ω∗ ∈ Ω∗|V ∗(ϕ)(ω∗) = 1} [shallow]
b. {ω∗ ∈ Ω∗|V ∗(ϕ)(ωn∗) = 1 for all n} [deep]

In addition, I believe it is likely that both update operations are required to
model the interpretation of conditionals. To see this, consider first what the
difference comes down to in terms of the intuitive interpretation of the two
versions of update.

13 However, Pr∗ (X|Y) is itself not always defined: It is undefined if either Pr(Yi) = 0
for any i, or the function does not not converge as n approaches infinity.



Recall first the intuitive interpretation of a Stalnaker Bernoulli model as a
representation of epistemic states. The idea was that a world sequence repre-
sents factual information in the first world, and conditional information in the
tail following the first world. As already mentioned in Footnote 9 above, from
the modal-logic perspective on the representation of knowledge and belief, one
can alternatively think of the sequences as representing all possible paths along
an introspective doxastic accessibility relation. This intuitive interpretation of
world sequences corresponds well with the proposal to model belief update by
conditionalization on the set of sequences throughout which the incoming sen-
tence is true (as opposed to the set of sequences at which the sentence evaluates
to 1).

With all this in mind, I believe that we can discern in the distinction between
shallow and deep conditioning an intuitively real difference in ways to “hypo-
thetically add,” in Ramsey’s words, a sentence ϕ to one’s probabilistic “stock of
knowledge”: Shallow update consists in assuming that ϕ is true, whereas deep
udpate consists in assuming that ϕ is learned.

The distinction between these two modes of update underlies certain prob-
lematic examples which have been discussed widely in the literature on condi-
tionals. Among them are simple conditionals like (18a), attributed to Richmond
Thomason by van Fraassen (1980), and (18b) from Lewis (1986).

(18) a. If my wife deceives me, I won’t believe it.
b. If Reagan works for the KGB, I’ll never believe it.

In both cases, the conditional antecedent is intuitively not correctly paraphrased
by any variant of the locution ‘If I know / learn that . . . ’, for otherwise it would
not make sense together with the consequent. Yet these examples are perfectly
well-formed and interpretable. What the examples show is that it is possible
for speakers to suppose that something is the case unbeknownst to them. The
present framework opens up a way to model the difference in a probabilistic
setting.

Another difference between the two modes of update concerns the interpreta-
tion of right-nested conditionals, i.e., sentences of the form B → (C → D). Here
we see a tangible consequence of the fact that the update with the antecedent
B determines the context for the interpretation of the consequent D → D. The-
orem 2 states the general result for deep conditioning with sentences of this
form.

Theorem 2. If P (BC) > 0, then P∗ (C → D|B∗) = P (D|BC).

Theorem 1 above is a special case of Theorem 2, again obtained by substituting
the tautology for B.

What is notable about this result is that it resembles the Conditional
Import-Export Principle, i.e., the rule that the conditional probability of
ϕ → ψ given χ should equal the conditional probability of ψ given ϕχ. Theo-
rem 2 shows that the Import-Export Principle holds for right-nested conditionals
under deep conditioning on the antecedent. On the other hand, it does not hold



under the standard Stalnaker Bernoulli interpretation. Recall from (9c) above
that the expectation of the values assigned to such right-nested conditionals is
quite different:

(9c) If P(B) > 0 and P(C) > 0, then
P∗(B → (C → D)) = P(CD|B) + P(D|C)P(C|B)

There is much room for further explorations into the ramifications of this distinc-
tion, for right-nested conditionals as well as for the others listed in (9b) and (9d)
above. These investigations are left to future work.

7 Conclusions

I have argued that it makes good sense to investigate the utility of Stalnaker
Bernoulli models as a formal tool for the representation and analysis of belief
states and their dynamics. The main arguments in favor of such a move draw on
the viability of an account long these lines that is immune to Lewisian triviality
results. But I also showed that once we start to investigate the matter seriously,
a number of additional subtleties and advantages come into view which merit
further study. The difference between shallow and deep conditioning and its
potential applications in the analysis of counterexamples to the Import-Export
Principle were one such example. Additionally, the framework promises to offer
a straightforward account of belief updates involving conditionals, whose theo-
retical implementation and empirical verification remain to be carried out. And
all of this, in a sense, leads up to the big question: whether it is time to do away
with the time-honored but simplistic possible-worlds models, if only to get the
meaning of conditionals right.

Appendix: Proofs

Proposition 1. For X ∈ F , if Pr(X) > 0, then

Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

))
= 1.

Proof. Notice that
⋃
n∈N

(
X
n ×X ×Ω∗

)
is the set of all sequences containing

at least one X-world, thus its complement is X
∗
. Now

Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

))
= 1− Pr∗

(
X
∗)

= 1− limn→∞ Pr∗
(
X
n ×Ω∗

)
= 1− limn→∞ Pr

(
X
)n

= 1 since Pr(X) < 1.

Lemma 1. If Pr(X) > 0, then
∑
n∈N Pr

(
X
)n

= 1/Pr(X).

Proof.
∑
n∈N Pr

(
X
)n × Pr (X) =

∑
n∈N

(
Pr
(
X
)n × Pr (X)

)
=
∑
n∈N Pr∗

(
X
n ×X ×Ω∗

)
= Pr∗

(⋃
n∈N

(
X
n ×X ×Ω∗

))
= 1 by Prop. 1



Theorem 1. For A,C ∈ L0
A, if P(A) > 0, then P∗ (A→ C) = P(C|A).

Proof. By Definition 6, the set of sequences ω∗ such that V ∗(A→ C)(ω∗) = 1 is
the union

⋃
n∈N ({ω ∈ Ω|V (A)(ω) = 0}n × {ω ∈ Ω|V (AC)(ω) = 1} ×Ω∗). Since

the sets for different values of n are mutually disjoint, the probability of the union
is the sum of the probabilities for all n. Now, for all X,Y ∈ F ,

Pr∗
(⋃

n∈N

(
Y
n × (X ∩ Y )×Ω∗

))
=
∑
n∈N Pr∗

(
Y
n × (X ∩ Y )×Ω∗

)
=
∑
n∈N

(
Pr
(
Y
)n × Pr(X ∩ Y )

)
=
∑
n∈N Pr

(
Y
)n × Pr(X ∩ Y )

= Pr(X ∩ Y )/Pr(Y ) by Lemma 1.
In particular, let X,Y be the set of worlds in Ω at which V (C) and V (A) are
true, respectively.

Proposition 2. If Pr(Z) > 0, then Pr∗ (Z∗|Z∗) = 1.

Proof. Pr∗ (Z∗|Z∗) = limn→∞ Pr∗ (Zn ×Ω∗|Zn ×Ω∗) = 1.

Proposition 3. If Pr∗ (X|Y) is defined, then Pr∗ (X|Y) × Pr∗ (Y) =
Pr∗ (X ∩Y).

Proof. Since Pr∗ (X|Y) is defined, Pr(Yn) > 0 for all n. Thus Pr∗ (X|Y) ×
Pr∗ (Y)

= limn→∞
Pr∗ (X1 ∩ Y1 × . . . Xn ∩ Yn ×Ω∗)

Pr∗ (Y1 × . . . Yn ×Ω∗)
× limn→∞ Pr∗ (Y1 × . . . Yn ×Ω∗)

= limn→∞

(
Pr∗ (X1 ∩ Y1 × . . . Xn ∩ Yn ×Ω∗)

Pr∗ (Y1 × . . . Yn ×Ω∗)
× Pr∗ (Y1 × . . . Yn ×Ω∗)

)
= limn→∞ Pr∗ (X1 ∩ Y1 × . . . Xn ∩ Yn ×Ω∗) = Pr∗ (X ∩Y)

Proposition 4. If Pr∗ (X|Y) is defined and Y ⊆ X, then Pr∗ (X|Y) = 1.

Proof. For all i ≥ 1, Xi ∩ Yi = Yi since Y ⊆ X, and Pr(Yi) > 0 since Pr∗ (X|Y)

is defined. Thus Pr∗ (X|Y) = limn→∞
Pr∗ (Y1 × . . .× Yn ×Ω∗)
Pr∗ (Y1 × . . .× Yn ×Ω∗)

= 1.

The following auxiliary result will be useful in the subsequent proofs.

Proposition 9. If Pr(Z) > 0, then for Xi ∈ F ,

Pr∗ (X1 × . . .×Xn ×Ω∗|Z∗) = Pr∗ (X1 × . . .×Xn ×Ω∗|Zn ×Ω∗)

Proof. Immediate because Z ⊆ Ω.

The significance of Proposition 9 derives from the fact that the sets of sequences
at which a given sentence in LA is true can be constructed (using set operations
under which F∗ is closed) out of sequence sets ending in Ω∗. This is obvious for
the non-conditional sentences in L0

A. For conditionals ϕ→ ψ the relevant set is
the union of sets of sequences consisting of n ϕ-worlds followed by a ϕψ-world.
For each n, the corresponding set ends in Ω∗ and therefore can be conditioned
upon Z∗ as shown in Proposition 9. Since these sets for different numbers n are
mutually disjoint, the probability of their union is just the sum of their individual
probabilities.



Proposition 5. If Pr(X ∩ Z) > 0, then Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

)∣∣∣Z∗) = 1.

Proof. Since Pr(X ∩ Z) > 0, Pr(X ∩ Z) < Pr(Z). Thus

Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

)∣∣∣Z∗) = 1− Pr∗
(
X
∗
∣∣∣Z∗)

= 1− limn→∞
Pr∗

(
(X ∩ Z)n ×Ω∗

)
Pr∗ (Zn ×Ω∗)

= 1− limn→∞
Pr
(
X ∩ Z

)n
Pr (Z)

n

= 1− limn→∞

(
Pr
(
X ∩ Z

)
Pr (Z)

)n
= 1 since Pr∗(X ∩ Z) < Pr∗(Z)

Lemma 2. If Pr(X ∩ Z) > 0, then
∑
n∈N Pr

(
X|Z

)n
= 1/Pr(X|Z).

Proof. Since Pr(X ∩Z) = Pr(Z)×Pr(X|Z), both Pr(Z) > 0 and Pr(X|Z) > 0.∑
n∈N Pr

(
X|Z

)n × Pr (X|Z) =
∑
n∈N

(
Pr
(
X|Z

)n × Pr (X|Z)
)

=
∑
n∈N

Pr
(
X ∩ Z

)n × Pr (X ∩ Z)

Pr (Z)
n+1 =

∑
n∈N

Pr∗
(
(X ∩ Z)n × (X ∩ Z)×Ω∗

)
Pr∗ (Zn+1 ×Ω∗)

=
∑
n∈N Pr∗

(
X
n ×X ×Ω∗

∣∣∣Zn+1 ×Ω∗
)

=
∑
n∈N Pr∗

(
X
n ×X ×Ω∗

∣∣∣Z∗) by Proposition 9

= Pr∗
(⋃

n∈N

(
X
n ×X ×Ω∗

)∣∣∣Z∗) = 1 by Proposition 5.

Theorem 2. If P (BC) > 0, then P∗ (C → D|B∗) = P (D|BC).

Proof. P∗ (C → C|B∗) = limn→∞
P∗(((C → D) ∧B)n ×Ω∗)

P∗ (Bn ×Ω∗)

= limn→∞

∑n−1
i=0 P(CB)i × P(CDB)

P (B)n

= limn→∞
∑n−1
i=0 P(C|B)i × P(CD|B)

= P(CD|B)/P(C|B) by Lemma 2
= P(D|BC)
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