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1 Introduction

1.1 What we will be talking about

Modality

(1) a. It might be raining.
b. It’s not raining.
c. #It might be raining.

(2) a. It’s not raining.
b. #It might be raining.

Modal subordination

(3) a. If John bought a book, he’ll be home reading it by now.
b. It’ll be a murder mystery.

(4) a. A wolf might come in.
b. It would eat you first.

(5) (Mary and Beth approaching Mary’s home at night; the house is dark)

M: “My husband isn’t home yet.”
B: “How do you know?”
M: “The light would be turned on.”

Conditional questions

(6) a. If Alfonso comes to the party, will Joanna come as well?
b. Yes, she will.
c. Alfonso isn’t coming.

(7) a. A wolf might come in.
b. Do you think it would eat me?
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2 Groenendijk et al. (1996)

The goal of this paper is to extend previous dynamic accounts to include world knowledge
and modal expressions in the coverage. The idea was not entirely new at the time (recall ouf
discussion of Heim, 1983b), but this paper explores the matter more in-depth.

2.1 Two kinds of information

In any discourse, two kinds of information are simultaneously being conveyed:

1. Information about the world
What the world is like – facts, propositions – extralinguistic content.
As usual, this is modeled with possible worlds

2. Information about the discourse
Which individuals are being talked about and what is known or asserted said about them
– linguistic content.
The is modeled with referent systems (much like assignment functions, but slightly
more complex).

The goal of the paper is to account for the interaction between the two kinds of information:

• Learning something about a discourse referent may eliminate possible worlds.

• Eliminating possible worlds may affect your beliefs about discourse referents.

Let’s look at their system in some detail.

2.2 The formal setup

Referent systems

Readers of this paper sometimes complain about referent systems, finding the useless and
complicated. But they are easy to get used to once you get your head around them.

• The basic idea behind referent systems is that GSV want to make it possible to “recycle”
variables, just as it is possible to “recycle” pronouns in English.

(8) a. A mani came in. Hei was tall.
b. John greeted the mani. Hej offered himi hisj seat.

In (9b), ‘he’ refers to John, no longer to the man.

➽ English has only a small number of pronouns. GSV want a logic which relies on a small
number of variables.

Note: As before, this theory doesn’t actually make predictions about the choice among
possible coindexings for a given sentence. It only tells us which coindexings are and aren’t
possible.

• How they do it: Introduce an additional layer of representation between variables and the
individuals they denote. These intermediate representations are natural numbers.
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• Whenever a variable is introduced (by a quantifier), regardless of whether it has been
introduced before or not, assign it to the least natural number not yet used.

0 1 2 3 4 . . .

[x/0] x

0 1 2 3 4 . . .

[y/1] x y

0 1 2 3 4 . . .

[x/2] y x

0 1 2 3 4 . . .

[x/3] y x

0 1 2 3 4 . . .

Formally:

i. A referent system is a function r : V 7→ N, where V is a finite set of variables.

Let a referent system with “range n” be one whose domain consists of the n numbers from
0 through n− 1. For instance, the r in (7) has range 1, and the one in (8) has range 3.

Thus if a referent system has range n, the number n is itself not in its range. That’s why
the following definition works.

ii. r[x/n] = r′ iff

(a) dom(r′) = dom(r) ∪ {x};

(b) range(r′) = n+ 1;

(c) r′(x) = n; and

(d) r′(y) = r(y) for all y 6= x.

Intuitively, r[x/n] is is the result of either introducing or recycling variable x.

iii. r′ is an extension of r, r ≤ r′, iff

(a) dom(r) ⊆ dom(r′) (all variables in the domain of r are also in the domain of r′);

(b) n ≤ n′ (the greatest number associated with a variable in r′ is at least as great as the
greatest number associated with a variable in r);

(c) all variables in the domain of r are either still mapped to the same numbers in r′, or
mapped to “fresh” numbers that were not yet in the range of r;

(d) “fresh” variables not in the domain of r are mapped to “fresh” pegs not in the range
of r.

Possibilities

At the center of the model theory are possibilities. Two main intuitions motivate GSV’s ap-
proach, both of which we have encountered separately before:

1. Possibilities, basically, are world-assignment pairs, as in Heim (1983b).
Basically, the pegs are the very same thing as the natural numbers in Heims’ system.

2. New discourse referents are introduced with random (re-)assignment, as in Kamp
(1981); Heim (1983a); Groenendijk et al. (1996).
When a variable is either recycled or newly introduced, all of its possible assignments are
multiplied out.

Formally, a possibility is a triple 〈r, g, w〉, where

i. r is a referent system (i.e., a function from some set of variables to some finite initial subset
of the natural numbers).
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ii. g is function from the range of r to individuals.

Let’s stop here and look at the interaction between r and g. Suppose there are two individuals
in the domain D of the model, a and b. In (9), we start with empty r and g (i.e., no discourse
referents have been used yet).

(9) 0 1 2 3 . . . [x/0]

x

0 1 2 3 . . .

a
b

[y/1]

x y

0 1 2 3 . . .

a a
a b
b a
b b

[x/3]

y x
r

0 1 2 3 . . .

a a a g1
a a b g2
a b a g3
a b b g4
b a a g5
b a b g6
b b a g7
b b b g8

The rightmost table in (9) depicts eight possible assignments, each with the same referent system
r but different assignments g from pegs to individuals. It should be obvious how the introduction
or reassignment of a variable proceeds with random assignment to all possible values.

This example spells out all possible assignments for the pegs in use. Of course, not all of
them assignments stay around, since facts about the discourse referents are also accumulated.
Which assignments are eliminated in response to factual information is determined by possible
worlds.

i. Let W be a set of possible worlds. The set I of possibilities based on domain D and
universe W is the set of triples 〈r, g, w〉, where r is a referent system, g is a function from
the range of r into D; and w is a world in W .

Note: In the example in (9), we would have end up with a set of eight assignments like
those in the rightmost table for each world. Thus there would |W | × 8 possibilities after all
and only the operations listed in (9) are carried out.

ii. For simplicity, for any possibility i ∈ I and basic expression (i.e., variable or constant), we
write i(α) to refer to the denotation of α in i.

(a) If α is a variable in dom(r), then i(α) = g(r(α)). (Otherwise undefined.)

(b) If α is an individual constant, then i(α) = w(α) ∈ D.

(c) If α is an n-ary predicate constant, then i(α) = w(α) ⊆ Dn. (That is, a set of n-tuples
of individuals in D.)

Suppose for some world w ∈W , w(man) = {b}. What happens if after the introduction of y in
the model, the next thing we learn is that x is a man?

(10)

w

x y

0 1 2 3 . . .

a a
a b
b a
b b

man(x)

w

x y

0 1 2 3 . . .

b a
b b

[x/3]

w

y x
r

0 1 2 3 . . .

b a a g5
b a b g6
b b a g7
b b b g8
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➽ Once x has been reset with random assignment, it is longer restricted to men. However, the
information that peg 0 refers to a man is preserved.

If there had been no men in w, then all possibilities with w would have been eliminated. To see
this, let’s look at some more definitions.

Information states

i. An information state is a set s ⊆ I of possibilities that all have the same referent system.
(The rules of interpretation ensure that the referent systems in these possibilities will always
be the same.)

ii. The (re-)assignment of a variable to an individual d ∈ D is modeled by a function [x/d]
on possibilities i and information states s:

(a) i[x/d] = 〈r[x/range(r)], g[range(r)/d], w〉

(b) s[x/d] = {i[x/d]|i ∈ s}

iii. A possibility i′ = 〈r′, g′, w′〉 is an extension of a possibility i = 〈r, g, w〉 (written i ≤ i′) iff:

(a) r ≤ r′

(b) g ⊆ g

(c) w = w′

A state s′ is an extension of a state s (written s ≤ s′) iff every possibilities in s′ is an
extension of some possibility in s.

iv. Let s, s′ be two information states such that s′ is an extension of s, and let i ∈ s, i′ ∈ s′.
The:

(a) i′ is a descendant of i iff i ≤ i′.

(b) i subsists in i′ iff i has at least one descendant in s′.

(c) s subsists in s′ iff all i ∈ s subsist in s′.

For instance, in the leftmost possibility depicted in (10), the assignments gi with gi(0) = a
do not subsist in the next state, but those with gi(0) = b do. The first state does not
subsist in the second, but the second subsists in the third. (The last statement is only
guaranteed to be true if W = {w}. We don’t know anything about who is a man in other
worlds.)

v. The state 〈∅, ∅,W 〉 is the state of (blissful) ignorance: No information about the world, no
discourse information.

The state ∅ is the absurd state: No possibility left, no world compatible with the informa-
tion. Everything is believed in ∅.
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Update rules

Each formula ϕ ∈ LA denotes a function JϕK from states to states.
(Note: This is a relation between possibilities, but a function between states.)

sJP (t1, . . . , tnK ={i ∈ s|〈i(t1), . . . , i(tn)〉 ∈ i(P )}

sJt1 = t2K ={i ∈ s|i(t1) = i(t2)}

sJ¬ϕK ={i ∈ s|i does not subsist in sJϕK}
sJϕ ∧ ψK =sJϕKJψK
sJ∃xϕK =

⋃

d∈D

(s[x/d]JϕK)

sJ3ϕK ={i ∈ s|sJϕK 6= ∅}

Comments:

• If ϕ contains no quantifiers, then sJϕK ⊆ s.

• If ϕ contains a quantifier, then the number of possibilities in sJϕK may be greater than
in s.

• The definition for ∃xϕ is a bit peculiar: Here we are not able to extract a definition for
an operation J∃xK, as we could before.

Let’s see first what would have happened if we had executed J∃x man(x)K, rather than
[x/3], in the last step in (10).

(11)

w

x y

0 1 2 3 . . .

b a
b b

J∃xman(x)K =
⋃















w

y x

0 1 2 3 . . .

b a a
b b a

Jman(x)K,

w

y x

0 1 2 3 . . .

b a b
b b b

Jman(x)K















=
⋃















∅,

w

y x

0 1 2 3 . . .

b a b
b b b















=

w

y x
r

0 1 2 3 . . .

b a b g6
b b b g8

Q: Why so cumbersome? In particular: Why not have (12a), resulting in (12b)?

(12) a. J∃xK =
⋃

d∈D s[x/d]
b. J∃xϕK =

(
⋃

d∈D s[x/d]
)

JϕK

A: For one purpose: To get the interpretation of sentences with 3 right. Let’s look at 3.

• For any ϕ, J3ϕK is a test:
(13)

sJϕK =

{

s if s can be updated with ϕ without leading to the absurd empty state.

∅ i.e., the absurd empty state, otherwise.
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This means that ‘3 rain’ cannot meaningfully be used to convey the information that it
may be raining.

a. Either the agent already believes that it may be raining; then the update has no
effect.

b. Or the agent already believes that it is not raining; then the update leads to incon-
sistency.

➽ This rule is a disappointment if you are looking for an account of how modalized
sentences can convey new information. But that is not what this paper aims to accomplish.
Here, modals are strictly epistemic and “self-referential” in the sense that they are always
evaluated with respect to the information state of the evaluator, not some other agent.

Now back to ∃. Consider (14) and the two possible logical representations:

(14) There is a student who may come to my office today.
a. ∃x[S(x) ∧ 3C(x)]
b. ∃xS(x) ∧ 3C(x)

Let D = {a, b}; W = {w, v}; w(S) = {a, b}; v(S) = {b}; w(C) = {b}; v(C) = ∅. Notice that a
does not come in either of the worlds. Start from the state of ignorance.

(15)
⋃

d∈{a,b,c}











w

0 . . .

v

0 . . .
[x/d]JS(x) ∧ 3C(x)K











=
⋃

































w

x

0 . . .

a

v

x

0 . . .

a

JS(x)KJ3C(x)K,

w

x

0 . . .

b

v

x

0 . . .

b

JS(x)KJ3C(x)K

































=
⋃

































w

x

0 . . .

a

J3C(x)K,

w

x

0 . . .

b

v

x

0 . . .

b

J3C(x)K

































=
⋃











w

x

0 . . .

b

v

x

0 . . .

b











=

w

x

0 . . .

b

v

x

0 . . .

b

This is how the sentence is interpreted according to GSV. The crucial feature of this rule is that
the scope of ∃x is processed “locally” for each possible value of x, not “globally” relative to the
whole information state.
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What would have happened if we had wrapped up the scope of ∃x (i.e., taken the union) earlier?

(16)
⋃

d∈{a,b,c}











w

0 . . .

v

0 . . .
[x/d]JS(x)K











J3C(x)K

=
⋃

































w

x

0 . . .

a

v

x

0 . . .

a

JS(x)K,

w

x

0 . . .

b

v

x

0 . . .

b

JS(x)K

































J3C(x)K =
⋃

































w

x

0 . . .

a

w

x

0 . . .

b

v

x

0 . . .

b

































J3C(x)K

=

w

x

0 . . .

a

w

x

0 . . .

b

v

x

0 . . .

b

J3C(x)K =

w

x

0 . . .

a

w

x

0 . . .

b

v

x

0 . . .

b

• This is a strange result: In this information state, it is believed that a is among possible
referents of x for whom the sentence S(x) ∧ 3C(x) is true. But while a a student in his
possibility, there is no possibility in which a comes!

• That did not happen in the earlier update in (15). There the second conjunct 3C(x) was
evaluated “locally” for the set of possibilities that map x to d, for each individual d ∈ D.

• Intuitively, the difference between (15) and (16) in the interpretation of 3C(x) can be
paraphrased as follows:

(15’) Among the possibilities in which x is assigned to d, there is one (or more) in which
the referent of x comes.

(16’) There is one (or more) possibility in which the individual that x is assigned to
comes.

It is much easier for (16) to be true; but in our example, that is probably not the reading
that we want. That’s why GSV evaluate the scope of an existential quantifier “locally”
for each individual. This doesn’t quite make the problem go away, however. Consider the
following:

(17) a. There is a student who may come today. She may bring my book.
b. There is a student who may come today and bring my book.

At some point, we have to take the union and wrap up the existential quantifier. If we do
this at the end of the sentence, then (17a) is not equivalent to (17b)!

• In general, the following equivalence was valid in Groenendijk and Stokhof (1991), but is
not valid in Groenendijk et al. (1996):

∃xϕ ∧ ψ 6⇔ ∃x[ϕ ∧ ψ]
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since, as we saw, they are not equivalent if ψ contains a possibility operator.

• In Section 4.2, GSV argue that there are in fact examples where both readings are sensible.

(18) a. There is someone hidden in the closet. He might be guilty.
b. There is someone hidden in the closet who might be guilty.

I have to admit that this example is too subtle for me to be sure whether I agree.

Temporary states

In their subsection on modal subordination, GSV mention briefly discuss the potential use
of the “temporary” states created in the course of various tests, esp. Negation and modals.

(19) A wolf might come in. It would eat you first.

They stop short of developing a fully account, but the idea is pretty clear:

i. The evaluation of 3∃x[W (x)∧C(x)] in a state s consists in a test: Update s with ∃x[W (x)∧
C(x)] and observe what happens.

ii. If the test is successful, the state sJ∃x[W (x) ∧ C(x)] is created. If we could keep it “in
memory,” we might be able to refer to it later, in processing the next sentence.

iii. Otherwise, the modal sentence is false and there is no use for sJ∃x[W (x) ∧ C(x)].

Version of the GSV system are still very much being used. However, it can and must be flashed
out in various ways. For instance, its account of ‘might’ is only reasonable in self-referential
epistemic uses (and even there it sounds like an odd depiction of what goes on in communication).
The next paper will begin to do something about that.

9



3 Veltman (1996)

We are (for now) back to propositional logic; no idividuals. Veltman’s goal in this paper is to
develop an update semantics in which an information state is not just a representation of what
is deemed possible, but also which worlds are more likely than others.

This is a rich and long paper, and it is impossible to go through it in detail in the time we have.
I will try to isolate a few ideas that are particularly relevant.

Veltman’s intended application is default reasoning – patterns like these:

(20) Ps normally are R.
x is P

Presumably, x is R.

(21) P’s normally are R.
x is P.
x is Q.

Presumably, x is R.

(22) Q’s normally are not R.
P’s normally are R.
x is P.
x is Q.

???

(23) Q’s normally are P.
Q’s normally are not R.
P’s normally are R.
x is P.
x is Q.

Presumably, x is not R.

Obviously, rules like (24a) are not the same as (24b), and (25a) is not the same as (25b).

(24) a. Q’s normally are P
b. All Q’s are P

(25) a. Presumably, x is not R.
b. x is not R.

In both (24) and (25), the (a)-sentence is a “soft belief” which the speaker realizes may have
to be given up in light of new evidence, whereas the (b)-sentence is a “hard belief” which the
speaker expects to be consistent with all new information.

➽ In other words, we are dealing with non-monotonicity.
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We’ve seen this before: might p ; not p is consistent, whereas not p ; might p is not. For
instance, the belief in of (26a) is given up as a result of the update with (26b), so that the
continuation with (26c) sounds self-contradictory.

(26) a. Mary might be outside.
b. Mary is inside.
c. #Mary might be outside.

This already came out right in Groenendijk et al. (1996). Veltman wants to extend the account
to modals like ‘normally’ and ‘presumably’.

Might

• Languages L0
A, L1

A: Let a set of finitely many atomic sentences A be given.

i. L0
A is the standard language of propositional logic built from A.

ii. ϕ ∈ L0
A iff ϕ,might ϕ ∈ L1

A.

• Information states: Let W be the powerset of A.

i. σ is an information state iff σ ⊆W ;

ii. 0, the minimal state, is the information state given by W ;

1, the absurd state, is the information state given by the empty set.

iii. For every two states σ and τ , σ + τ = σ ∩ τ .1

Note: This definition does not really tell us what a subset of LAA represents. Only the
prose does. It’s important to keep this in mind: “Intuitively, a subset w of A – or a possible
world as we shall call it – will be an element of σ iff, for all the agent in σ knows, w might
give a correct picture of the facts – given the agent’s information, the possibility is not
excluded that the atomic sentences in w are all true and the others false. (Emphasis
added.)

➽ Although a world w is just a set of atomic sentences, implicitly the state of affairs
depicted by w is taken to be one where all the sentences not in w are false.

➽ Worlds are total, as before.

• Interpretation for L1
A: For every ϕ ∈ L1

A and state σ:

If ϕ ∈ A, then σJϕK =σ ∩ {w ∈W |p ∈ w}(27)

σJ¬ϕK =σ \ σJϕK(28)

σJϕ ∧ ψK =σJϕK ∩ σJψK(29)

σJϕ ∨ ψK =σJϕK ∪ σJψK(30)

σJmight ϕK =

{

σ if σJϕK 6= 1

1 if σJϕK = 1
(31)

Comments: This time, conjunction is not defined as sequential update – presumably
because Veltman liked the correspondence with conjunction. Question: Is this definition
of conjunction equivalent to one involving sequential update? Find out for yourself.

‘might’ is again interpreted as a test.

1The + operator is defined as the join of the lattice of information states. I’d like to skip this part unless
people want to discuss it.
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• There are a lot more interesting points in Section 2, but we’ll skip them.

Normally, presumably

• Language L2
A: ϕ ∈ L0

A iff ϕ, normally ϕ, presumably ϕ ∈ L2
A.

• Sentences with ‘normally’ are called (default) rules

• For the interpretation of these new sentences, let’s take an excursion to the land of modal-
ity. Although this is a bit of a disruption, it will provide the link to standard linguistic
accounts of modality.

Excursion: Ordering sources

Ordering sources were introduced by Kratzer (1981). I’ve adapted the framework and notation
here for Veltman’s framework.

(32) a. This is the road to Springfield.
b. This must be the road to Springfield.

• ‘must’ clearly “feels like” a necessity modal.

• But intuitively, (32b) is semantically weaker than (32a): You can believe (and assert)
(32b) without believing (or asserting) (32a), but not vice versa.2

• Kratzer wants to treat ‘must’ as a necessity modal and account for the fact that it gives
rise to relatively weak readings. Ordering sources help her accomplish this.

Technicalities

i. Basic idea: Impose an order on the information state and let the quantification range only
over the minimal elements of this order.

ii. Formally: The proposition expressed by ϕ is defined by Veltman as the set of worlds that
you get when you update the “minimal state” 0 with ϕ:

||ϕ|| =df 0JϕK

iii. An order 6Φ on σ is derived from a set Φ of propositions “that a certain agent considers
to be normally the case.”

(33) w 6Φ z iff {p|p ∈ Φ ∧ z ∈ p} ⊆ {p|p ∈ Φ ∧ w ∈ p}

(Recall that a proposition is a set of worlds.)

• 6Φ, for any Φ, is a pre-order (transitive and reflexive).

• This order does not give us “degrees” of conformity with the norms. We only get a way of
comparing worlds and telling which is more/less exceptional; there is no absolute measure
of “goodness.”

2Kratzer’s argument is slightly different: She notes that under a “‘pure’ epistemic interpretation (presumably
a realistic one) of the modal, (32b) entails (32a). This is true, but the premise that (32b) has such a “‘pure’
epistemic reading is not so obvious to me.

12



Veltman

i. In his definitions, Veltman starts out with a given reflexive and transitive relation ε, only
motivating it in his prose as being induced by a set of “normal” propositions in the way
defined in (33). As a consequence, there is a slight notional difference: In ‘w 6ε v’, the
subscript is not the set of propositions, but the relation itself.

ii. According to Veltman, we should think of a statement of the form w 6ε z as saying that
w is no more exceptional than z. From this, we can also define an equivalence relation
‘w ≃ε v’ as ‘w 6ε v ∧ v 6ε w’, and ‘′w <ε v’, the statement that w is (strictly) less
exceptional than v.

iii. If you look at Kratzer’s (1981) truth conditions for modals (see my handout from the
Modality tutorial in August, 2005), you see that it is quite complicated. That was because
we cannot in general assume that there is a set of minimal 6ε-worlds. However, with
Veltman we can: Since the set A is finite and possible worlds are subsets of A, there are
only finitely many possible worlds.

End of excursion

Continuing Veltman’s definitions for L2
A:

• Exception pattern on W : Let W be as before. Then ε is an exception pattern on
W iff ε is a reflexive and transitive relation on W .

• Eventually, an information state will be defined as a pair 〈ε, s〉, where s is again a set of
possible worlds and ε is an exception pattern. Some more auxiliary notions are required.

• Normal worlds in W : Let ε be an exception pattern on W .

i. w is a normal world in ε iff w 6ε v for every v ∈W .

ii. nε is the set of all normal worlds in ε.

iii. ε is coherent iff nε 6= ∅.

Note: There are many transitive and reflexive relations under which there is no normal
world according to this definition (even if the set of worlds is finite). In the present setup,
we are only guaranteed to get normal wolds if the set of propositions generating ε is
consistent.

• nε is the set of “best” worlds relative to all of W . Now, and agent may know that she is
not in one of those best worlds – none of them may be in her set of worlds s. However, ε
can also give us a set best worlds among the ones in s. We simply restrict ε to s:

• Optimal worlds in s: Let ε be a pattern on W , and s ⊆W .

i. w is optimal in 〈ε, s〉 iff w ∈ s and there is no v ∈ s such that v <ε w.

ii. m〈ε,s〉 is the set of all optimal worlds in 〈ε, s〉.

• Refinement of an exception pattern: Let ε, ε′ be patterns on W , and e ⊆W .

i. ε′ is a refinement of ε iff ε′ ⊆ ε;
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ii. The refinement of ε with e is the exception pattern ε ◦ e, defined as follows:

(34) w(ε ◦ e)v ⇐⇒ wεv ∧ (v ∈ e→ w ∈ e)

That is, w is at least as good as w according to the original ranking, and if e holds
in v, then it holds also in w.

This eliminates from ε those pairs of worlds 〈w, v〉 where v conforms to the new rule
e and w doesn’t.

If ε is generated by a set of propositions Φ (see Kratzer’s system above), then this
simply amounts to adding e to Φ.

• Defaults: A proposition e ⊆W is a default in ε iff e 6= ∅ and ε ◦ e = ε.

(I.e., if ǫ is not changed by refining it with e.)

• Information states: Let W as before.

i. σ is an information state iff σ = 〈ǫ, s〉 and one of the following is fulfilled:

a. ε is a coherent pattern on W and s is a non-empty subset of W ;

b. ε = {〈w,w〉|w ∈W} and s = ∅;

ii. a. 0, the minimal state, is given by 〈W ×W,W 〉;

b. 1, the absurd state, is given by given by 〈{〈w,w〉|w ∈W}, ∅}

iii. Let σ = 〈ε, s〉 and σ′ = 〈ε′, s′〉 be states.

a. σ + σ′ = 〈ε ∩ ε′, s ∩ s′〉 if 〈ε ∩ ε′, s ∩ s′〉 is coherent;

b. σ + σ′ = 1 otherwise.

The last clause ensures that only one incoherent state is ever reached: All updates that
result in an incoherent state are “directed” to 1.

• Update rules: Let σ = 〈ε, s〉 be an information state. For all ϕ ∈ L2
A:

if ϕ ∈ L0
A, then σJϕK =

{

1 if s ∩ ||ϕ|| = ∅

〈ǫ, s ∩ ||ϕ||〉 otherwise
(35)

if ϕ = normally ψ then σJϕK =

{

1 if nε ∩ ψ = ∅

〈ε ◦ ||ψ||, s〉 otherwise
(36)

if ϕ = presumably ψ then σJϕK =

{

σ if mσ ∩ ||ψ|| = mσ

1 otherwise
(37)

• (35) updates factual knowledge only; (36) updates knowledge about defaults only; (37) is
a test.

➽ (36) is new. We didn’t have a way of learning about what’s likely before.

➽ (37) is now a better test than what we had before: Only the set mσ is tested, not all
worlds in σ. Thus the agent may believe that ψ is presumably true without being sure
that ψ is true.

➽ We can now also define a stronger version may ϕ: Not as ‘ϕ is possible’, but rather
something like ‘varphi is presumably possible’. The latter imposes a stronger condition
the set of worlds, namely that there be a ϕ-world in mσ, not just in σ.
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Some consequences

The consequence relation  is defined as follows:

(38) ψ1, . . . , ψn  ϕ ⇐⇒ 0Jψ1K . . . JψnK  ψ

(39) a. 0Jnormally pKJ¬pK 6= 1
0Jnormally pKJnormally ¬pK = 1

b. normally p  presumably p
normally p,¬p 6 presumably p
normally p,¬p  normally p

c. normally p, q  presumably p
normally p, q,¬p 6 presumably p

d. normally p, normally q  presumably p
normally p, normally q,¬p 6 presumably p
normally p, normally q,¬p  presumably q

e. normally p, normally q,¬(p ∧ q) 6 presumably p
normally p, normally q,¬(p ∧ q) 6 presumably q

Conditional rules

In Section 4 of his paper, Veltman refines his system. We won’t discuss this in as much detail
as above, but it is important to know what he’s doing there.

Consider (40):

(40) a. Normally it rains.
b. But if there is an easterly wind, the weather is usually dry.

The content of the “excpetion rule” (40b) cannot be captured adequately with a unary operator
like normally. The best guess might be to put a material conditional in its scope:

(39’) a. normally rain
b. normally(eastwind→ ¬ rain)

For the two statements in (40a,b) to be true, it is sufficient that there is normally no eastwind.
Hence (40b) does not really impose the constraint that (39b) does.

Veltman’s solution: Have binary operator ; to form restricted rules: ϕ ; ψ means intuitively
‘If ϕ, then normally ψ’.

➽ This is a statement about the ϕ-worlds in W .

NOT about the ϕ-worlds in the agent’s information state, for one can say

(41) a. If there is an easterly wind, the weather is usually dry.
b. But today there is an easterly wind and it is raining.

So as before with the unary operator normally, it is possible to know that you are not in a
normal world.

It seems that Veltman was not striving for originality when implementing the idea of conditional
rules. He stipulates that the model fixes a “local” exception pattern for each subset of W .
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Q: Why can’t we derive these local patterns from the overall rleation ε?

A: I don’t know. As far as I can see, it should be possible.

Upshot:

Richer formal representations of information states can model more than just an agent’s beliefs
of what is (im-)possible. If we enrich our notion of information state to model more subtle
data, we will likely find that there is some linguistic expression that operates on the piece of
the apparatus that incorporates the enrichment.
➽ There is no a priori limit on what you can do with dynamic semantics. But it can get
complicated.

4 Roberts (1989)

Here are Roberts’s examples of modal subordination:

(42) The birds will get hungry (this winter).

(43) a. If Edna forgets to fill the birdfeeder, she will feel very bad.
b. The birds will get hungry.

(44) a. If John bought a book, he’ll be reading it by now.
b. #It’s a murder mystery.

(45) a. If John bought a book, he’ll be reading it by now.
b. It will be a murder mystery.

(46) a. A thief might break into the house.
b. He would take the silver.

Modal DRT

Roberts presents her account in an intensional version of DRT (see the end of yesterday’s
handout). Let’s take a closer look at that.

i. The language of boxes is like on yesterday’s handout, with the following additional forms:

(47) If K1,K2 ∈ κ, then K12K2,K13K2 ∈ κ.

ii. Let’s not join Veltman in making too many simplifications. The set of worlds may be
infinite, and there is not necessarily a set of “minimal” ones. Furthermore, the order 6

depends on w via an ordering source g, a function from worlds to sets of propositions.

For any box K, let XK be the set of discourse referents introduced in K. For any finite set
X = {x1, . . . , xn} of discourse referents, let g[X]h ⇐⇒ g[x1] ◦ . . . ◦ [xn]h.

Definition (48) is not equivalent to Roberts’s. I think this one is better, but I’ll have to
think more about it. No guarantee.

Definition (49) is a simpler version that works if we assume that there is a set of minimal
or “best” worlds in s. Either way, 3 is the converse of 2.
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gJK12K2Kwh ⇐⇒ h = g∧(48)

∀i, v[(h[XK1
]i ∧ v ∈ s ∧ iJK1Kvi) →

∃j, y[h[XK1
]j ∧ y ∈ s ∧ y 6g(w) v ∧ jJK1Kyj∧

∀k, z[(h[XK1
]k ∧ z ∈ s ∧ z 6g(w) y ∧ kJK1Kzk) →

∃l[k[XK2
]l ∧ lJK2Kzl]]]]

gJK12K2Kwh ⇐⇒ h = g∧(49)

∀i, v[(h[XK1
]i ∧ v ∈ m〈g(w),s〉 ∧ iJK1Kvi) → ∃j[i[XK2

]j ∧ jJK2Kvj]]

K13K2 =df ¬(K12¬K2)(50)

iii. Sentences like might p can be represented as conditional structures K13K2, where K1 is
empty i.e., imposes a trivial restriction and K2 represents p.

Notice Roberts’ use of the connective ‘2’, rather than ‘⇒’, for conditionals, highlighting the
fact that conditionals are essentially modal expressions.

(45a’)

x y

John(x)

book(y)
bought(x,y)

2

z w

reading(z,w)

z = x
w = y

Now there are two ways to continue the update:

(45a’ + 45b’)

r

x y

John(x)

book(y)
bought(x,y)

2

z w

reading(z,w)

z = x
w = y

murder-mystery(r)

(45a’ + 45b”)

x y

John(x)

book(y)
bought(x,y)

2

z w r

reading(z,w)

z = x
w = y

murder-mystery(r)
r = y

Clearly in (45a’ + 45b’), there is no way to ensure that r refers to the book John bought in the
embedded DRS. That information is lost once the processing of the conditional is over. Instead,
something like (45a’ + 45b”) gives intuitively the right truth conditions.

Hypothesis 1: Insertion

Stick the new material into the embedded box of the preceding sentence.
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Works for conditionals (see above)

BUT doesn’t work for others: In (51b), the resulting meaning is ‘A thief might break into the

house and steal the silver’.

(51) a. A thief might break into the house. 3

x

thief(x)

break-in(x)

b. He would take the silver. 3

x

thief(x)

break-in(x)
take-silver(x)

Hypothesis 2: Accommodation of the missing antecedent

Roberts instead argues for a purely pragmatic account: Accommodation (familiar from Lewis’s
writings on presupposition).

(52) a. A thief might break into the house. 3

x

thief(x)

break-in(x)

b. He would take the silver.

3

x

thief(x)

break-in(x)

x

thief(x)

break-in(x)
2

y

take-silver(y)

y = x

➽ Technically, Roberts proposes a kind of copy-and-paste procedure. This is of a very general
kind and also works for conditionals:

(53)

x y

John(x)

book(y)
bought(x,y)

2

z w

readingz,w

z = x
w = y

x y

John(x)

book(y)
bought(x,y)

2

r

murder-mystery(r)

r = y

(54) Either there’s no bathroom in this house or it’s in a funny place.

¬
x

bathroom(x)

in-this-house(x)
∨

x

bathroom(x)

in-this-house(x)
2

y

funny-place(y)

y = x
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F G H

F ::
y w v
house(y) silver(w) safe(v)

G :: F +

G’ G” X’
X’ = F

G’ :: X’ +

x
thief(x)
the-house(y)
break-in(x,y)

2 G” ::
the-silver(w)
take(x,w)

H :: G +

H’ H” X”
X” = G”

H’ :: X” +
the-safe(v)
finds(x,v)

2 H” :: try-open(x,v)

Figure 1: Frank-style Labeled DRS

Upshot

Roberts finds a way to express the meaning of the sequences in boxes, but there is no systematic
way to explain when, why and exactly how accommodation takes place. Instead of the copy-and-
paste method, some subsequent authors have used cross-references within the larger box (e.g.,
Frank’s 1996 “labeled” Discourse Representation Theory (LDRT); see Figure 1 for illustration.)
We will leave this subject here and turn to a different method.

5 Kaufmann (2000)

One of the problems with Roberts’s account, which is shared by those that use anaphoric links
between boxes, is that the phenomenon is more “local” than those methods would suggest:

I will be staying within a propositional framework here.

i. The formalism is based upon Groenendijk et al. (1996).

ii. Knowing in one state about another state:

(55) a. s[t ⊢ ψ] = {i ∈ s| i 6∈ t or i ∈ t[ψ]}
b. s[t ⊢ ψ] = s[ϕs,t → ψ]

Here ϕs,t is any proposition that leads from s to t. (There are of course many.)

iii. Failure

(56) a. s[⊥] = ∅
b. t ⊢ ⊥ ⇔ t = ∅
c. s[t ⊢ ⊥] = {i ∈ s|i 6∈ t or i ∈ t[⊥]}

= s[¬ϕs,t]
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Thus given the obvious consequence in (56b), we can define negation as implication as
in (56c).

iv. Success

(57) a. t 0 ⊥ ⇔ t 6= ∅
b. s[t 0 ⊥] = {i ∈ s|∃i′ ∈ s.i′ ∈ t}

= s[3ϕs,t]

c. [t ⊢ ⊤]
def
≡ [t 0 ⊥]

There is still a sense in which the definitions in (56) and (57) are fundamentally different:
The former can actually add information to the input state by eliminating some, but not
all possibilities. The latter can only return the input itself upon success or the empty state,
indicating failure. These different behaviors are a consequence of the set-up of the current
system: Since the only operation on states is elimination of possibilities, a statement that
t is empty can be made true by eliminating all possibilities that are also in t. A statement
that t is not empty, on the other hand, cannot be made true if it is false, since there is no
way of “putting back” possibilities.

v. Stacks

Definition 1 (Stacks)
The set of stacks is defined as follows:

a. If s is an information state, then 〈s〉 is a stack.

b. If s is an information state and σ is a stack, then 〈s, σ〉
is a stack.

c. Nothing else is a stack.

Stacks are used here with the assumption that the bottom state represents the indicative,
“original” state, while all others are “temporary.” An empty stack is not defined, nor can
the operations below produce one, since all interpretation by definition takes place in some
state.

Definition 1 (Stack Operations) The set of stack operators includes the following:

a. Assume: 〈s, σ〉 [ϕ]↑ 〈s[ϕ], 〈s, σ〉〉

b. Conclude: 〈s, σ〉 [ϕ]↓ 〈s[ϕ], τ〉,
where |σ| = |τ | = n
and σi[s ⊢ ϕ]τi for all i, 0 6 i < n

c. Pop: 〈s, σ〉 [
`

] =

{

〈s〉 if σ = 〈〉
σ otherwise

vi. Illustration

(58) a. s[ϕ→ ψ]
b. s [ϕ]↑ [ψ]↓

(59)
〈

s
〉

[ϕ]↑
〈

s[ϕ]
s

〉

[ψ]↓

〈

s[ϕ][ψ]
s[s[ϕ] ⊢ ψ]

〉
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Now suppose, for instance, that the next update is [χ]↓ . Let us abbreviate s[s[ϕ] ⊢ ψ] as
s′ and s[ϕ][ψ] as t′. The stack undergoes the changes shown in (60):

(60)

〈

t′

s′

〉

[χ]↓

〈

t′[χ]
s′[t′ ⊢ χ]

〉

The operation that takes s′ to s′[t′ ⊢ χ] is the removal of all those possibilties that have
descendants in t′ but not in t′[χ]. But since t′ = s′[ϕ][ψ], this is equivalent to removing
all those possibilities that have descendants in s′[ϕ][ψ] = s′[ϕ;ψ], but not in s′[ϕ][ψ][χ] =
s′[ϕ;ψ][χ]. From this and the definition of implication it is obvious that the end result is
the equivalent of obtaining s[t′ ⊢ χ] by an update with [(ϕ;ψ) → χ].

vii. Concluding ⊤ and ⊥

(61) Conclude2: 〈t, 〈s, σ〉〉 [ϕ]⇓ 〈t, 〈s[ϕ], τ〉〉,
where |σ| = |τ | = n
and σi[s ⊢ ϕ]τi for all i, 0 6 i < n

Example:

(62)
〈

s
〉

[ϕ]↑
〈

s[ϕ]
s

〉

[⊤]⇓

〈

s[ϕ]
s[s[ϕ] ⊢ ⊤]

〉

viii. Denotations

Definition 2 (Translations) A translation [[[·]]] maps linguistic expressions to stack oper-
ations:

a. [[[ϕ]]] = [
`

] ⋆ [ϕ]↓
b. [[[anyway]]] = [[[however]]] = . . . = [

`
] +

c. [[[then ϕ]]] = [[[wϕ]]] = [ϕ]↓
d. [[[if ϕ]]] = [ϕ]↑

e. [[[not ϕ]]] = [ϕ]↑ [⊥]⇓
f. [[[might ϕ]]] = [ϕ]↑ [⊤]⇓

ix. Illustration

(63) a. If Edna forgets to fill the birdfeeder, she will feel very
bad.

b. The birds will get hungry.
c. if ϕ then ψ ; wχ
d. [ϕ]↑ ; [ψ]↓ ; [χ]↓

(64) a.
〈

s
〉

[ϕ]↑
〈

s[ϕ]
s

〉

[ψ]↓

〈

s[ϕ][ψ]
s[s[ϕ] ⊢ ψ]

〉

b.

〈

s[ϕ][ψ]
s[s[ϕ] ⊢ ψ]

〉

[χ]↓

〈

s[ϕ][ψ][χ]
s[s[ϕ] ⊢ ψ][s[ϕ][ψ] ⊢ χ]

〉

(65) a. A thief might come in.
b. He would take the silver.
c. might ϕ ; wψ
d. [ϕ]↑ ; [⊤]⇓ ; [ψ]↓

21



(66) a.
〈

s
〉

[ϕ]↑
〈

s[ϕ]
s

〉

[⊤]⇓

〈

s[ϕ]
s[s[ϕ] ⊢ ⊤]

〉

b.

〈

s[ϕ]
s[s[ϕ] ⊢ ⊤]

〉

[ψ]↓

〈

s[ϕ][ψ]
s[s[ϕ] ⊢ ⊤][s[ϕ] ⊢ ψ]

〉

x. Disjunction: Exclusive ‘or’

(67) a. You will stay unmarried, or you will marry a tramp.
b. You’ll become a nun, or the tramp will beat you reg-

ularly.
c. Either way you’ll have a miserable life.

(68) a. s[ϕ xor ψ]= 〈s[ϕ], s[ψ]〉
b. 〈s, t〉[ϕ xor ψ]= 〈s[ϕ], t[ψ]〉
c. [ϕ xor ψ]↓≡ [ϕ]↓ xor [ψ]↓

For “bathroom” sentences, assuming the equivalence in (68c) and assuming that the in-
terpreter knows how to make the choice between the operators [·]↓ and [·]⇓ , one would
obtain (69):

(69)
〈

s
〉

[ϕ]↑
〈

s[ϕ]
s

〉

[⊥ xor ψ]↓

〈

s[ϕ]
〈s[s[ϕ] ⊢ ⊥], s[s[ϕ] ⊢ ψ]〉

〉

To be sure, although such an alteration would work for the examples above, it might turn
out that as it stands it would be no less stipulative than previous proposals. It remains to
be seen whether the framework proposed here can offer a substantial improvement in these
cases.

6 Isaacs and Rawlins (to appear)

I expect that there will be little if any time to talk about this paper. That’s a pity because it
is a very nice one. Some data:

(70) If Alfonso comes to the party, will Joanna leave?

Some issues:

• How can we characterize the meaning of such sentences?

Clearly this has to involve the semantics of questions; however, there have so far been no
good ways to build compounds of sentences with questions in them. (But see recent work
by Groenendijk, to appear, 2008.)

• Usually questions are characterized in terms of their answers (either the possible ones or
the true ones, depending on who you ask). What are the possible answers to conditional
questions? In particular, what’s the status of (71) in response to (70)?

(71) Alfonso isn’t coming.

(72) a. A thief might break in. Do you think he would take the silver?
b. Yes, he would.
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